Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey J. Barton is active.

Publication


Featured researches published by Geoffrey J. Barton.


Bioinformatics | 2009

Jalview Version 2--a multiple sequence alignment editor and analysis workbench.

Andrew M. Waterhouse; James B. Procter; David M. A. Martin; Michele E. Clamp; Geoffrey J. Barton

Summary: Jalview Version 2 is a system for interactive WYSIWYG editing, analysis and annotation of multiple sequence alignments. Core features include keyboard and mouse-based editing, multiple views and alignment overviews, and linked structure display with Jmol. Jalview 2 is available in two forms: a lightweight Java applet for use in web applications, and a powerful desktop application that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server. Availability: The Jalview 2 Desktop application and JalviewLite applet are made freely available under the GPL, and can be downloaded from www.jalview.org Contact: [email protected]


Nucleic Acids Research | 2008

The Jpred 3 secondary structure prediction server.

Christian Cole; Jonathan D. Barber; Geoffrey J. Barton

Jpred (http://www.compbio.dundee.ac.uk/jpred) is a secondary structure prediction server powered by the Jnet algorithm. Jpred performs over 1000 predictions per week for users in more than 50 countries. The recently updated Jnet algorithm provides a three-state (α-helix, β-strand and coil) prediction of secondary structure at an accuracy of 81.5%. Given either a single protein sequence or a multiple sequence alignment, Jpred derives alignment profiles from which predictions of secondary structure and solvent accessibility are made. The predictions are presented as coloured HTML, plain text, PostScript, PDF and via the Jalview alignment editor to allow flexibility in viewing and applying the data. The new Jpred 3 server includes significant usability improvements that include clearer feedback of the progress or failure of submitted requests. Functional improvements include batch submission of sequences, summary results via email and updates to the search databases. A new software pipeline will enable Jnet/Jpred to continue to be updated in sync with major updates to SCOP and UniProt and so ensures that Jpred 3 will maintain high-accuracy predictions.


Bioinformatics | 2004

The Jalview Java alignment editor

Michele Clamp; James Cuff; Stephen M. J. Searle; Geoffrey J. Barton

Multiple sequence alignment remains a crucial method for understanding the function of groups of related nucleic acid and protein sequences. However, it is known that automatic multiple sequence alignments can often be improved by manual editing. Therefore, tools are needed to view and edit multiple sequence alignments. Due to growth in the sequence databases, multiple sequence alignments can often be large and difficult to view efficiently. The Jalview Java alignment editor is presented here, which enables fast viewing and editing of large multiple sequence alignments.


Bioinformatics | 1998

JPred: a consensus secondary structure prediction server.

James Cuff; Michele Clamp; Asim S. Siddiqui; M. Finlay; Geoffrey J. Barton

UNLABELLED An interactive protein secondary structure prediction Internet server is presented. The server allows a single sequence or multiple alignment to be submitted, and returns predictions from six secondary structure prediction algorithms that exploit evolutionary information from multiple sequences. A consensus prediction is also returned which improves the average Q3 accuracy of prediction by 1% to 72.9%. The server simplifies the use of current prediction algorithms and allows conservation patterns important to structure and function to be identified. AVAILABILITY http://barton.ebi.ac.uk/servers/jpred.h tml CONTACT [email protected]


Proteins | 2000

Application of multiple sequence alignment profiles to improve protein secondary structure prediction

James Cuff; Geoffrey J. Barton

The effect of training a neural network secondary structure prediction algorithm with different types of multiple sequence alignment profiles derived from the same sequences, is shown to provide a range of accuracy from 70.5% to 76.4%. The best accuracy of 76.4% (standard deviation 8.4%), is 3.1% (Q3) and 4.4% (SOV2) better than the PHD algorithm run on the same set of 406 sequence non‐redundant proteins that were not used to train either method. Residues predicted by the new method with a confidence value of 5 or greater, have an average Q3 accuracy of 84%, and cover 68% of the residues. Relative solvent accessibility based on a two state model, for 25, 5, and 0% accessibility are predicted at 76.2, 79.8, and 86.6% accuracy respectively. The source of the improvements obtained from training with different representations of the same alignment data are described in detail. The new Jnet prediction method resulting from this study is available in the Jpred secondary structure prediction server, and as a stand‐alone computer program from: http://barton.ebi.ac.uk/. Proteins 2000;40:502–511.


Proteins | 1999

Evaluation and improvement of multiple sequence methods for protein secondary structure prediction

James Cuff; Geoffrey J. Barton

A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396‐protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8‐ to 3‐state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross‐validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/. Proteins 1999;34:508–519.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Nucleic Acids Research | 2006

Identification of multiple distinct Snf2 subfamilies with conserved structural motifs

Andrew Flaus; David M. A. Martin; Geoffrey J. Barton; Tom Owen-Hughes

The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.


Bioinformatics | 1993

Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation.

Craig D. Livingstone; Geoffrey J. Barton

An algorithm is described for the systematic characterization of the physico-chemical properties seen at each position in a multiple protein sequence alignment. The new algorithm allows questions important in the design of mutagenesis experiments to be quickly answered since positions in the alignment that show unusual or interesting residue substitution patterns may be rapidly identified. The strategy is based on a flexible set-based description of amino acid properties, which is used to define the conservation between any group of amino acids. Sequences in the alignment are gathered into subgroups on the basis of sequence similarity, functional, evolutionary or other criteria. All pairs of subgroups are then compared to highlight positions that confer the unique features of each subgroup. The algorithm is encoded in the computer program AMAS (Analysis of Multiply Aligned Sequences) which provides a textual summary of the analysis and an annotated (boxed, shaded and/or coloured) multiple sequence alignment. The algorithm is illustrated by application to an alignment of 67 SH2 domains where patterns of conserved hydrophobic residues that constitute the protein core are highlighted. The analysis of charge conservation across annexin domains identifies the locations at which conserved charges change sign. The algorithm simplifies the analysis of multiple sequence data by condensing the mass of information present, and thus allows the rapid identification of substitutions of structural and functional importance.


Journal of Molecular Biology | 1987

A strategy for the rapid multiple alignment of protein sequences: Confidence levels from tertiary structure comparisons☆

Geoffrey J. Barton; Michael J. E. Sternberg

An algorithm is presented for the multiple alignment of protein sequences that is both accurate and rapid computationally. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, two sequences are aligned, then the third sequence is aligned against the alignment of both sequences one and two. Similarly, the fourth sequence is aligned against one, two and three. This is repeated until all sequences have been aligned. Iteration is then performed to yield a final alignment. The accuracy of sequence alignment is evaluated from alignment of the secondary structures in a family of proteins. For the globins, the multiple alignment was on average 99% accurate compared to 90% for pairwise comparison of sequences. For the alignment of immunoglobulin constant and variable domains, the use of many sequences yielded an alignment of 63% average accuracy compared to 41% average for individual variable/constant alignments. The multiple alignment algorithm yields an assignment of disulphide connectivity in mammalian serotransferrin that is consistent with crystallographic data, whereas pairwise alignments give an alternative assignment.

Collaboration


Dive into the Geoffrey J. Barton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge