Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey J. Clark is active.

Publication


Featured researches published by Geoffrey J. Clark.


Journal of Cell Science | 2007

The RASSF1A tumor suppressor

Howard Donninger; Michele D. Vos; Geoffrey J. Clark

RASSF1A (Ras association domain family 1 isoform A) is a recently discovered tumor suppressor whose inactivation is implicated in the development of many human cancers. Although it can be inactivated by gene deletion or point mutations, the most common contributor to loss or reduction of RASSF1A function is transcriptional silencing of the gene by inappropriate promoter methylation. This epigenetic mechanism can inactivate numerous tumor suppressors and is now recognized as a major contributor to the development of cancer. RASSF1A lacks apparent enzymatic activity but contains a Ras association (RA) domain and is potentially an effector of the Ras oncoprotein. RASSF1A modulates multiple apoptotic and cell cycle checkpoint pathways. Current evidence supports the hypothesis that it serves as a scaffold for the assembly of multiple tumor suppressor complexes and may relay pro-apoptotic signaling by K-Ras.


Methods in Enzymology | 1995

Biological assays for Ras transformation.

Geoffrey J. Clark; Adrienne D. Cox; Suzanne M. Graham; Channing J. Der

The rodent fibroblast systems described above have provided sensitive and rapid biological assays to characterize the properties of normal and mutated Ras proteins. Furthermore, these assays have provided in vitro systems to measure the ability of other cellular components to modulate Ras signal transduction and transformation. However, while these assays provide an excellent measure of Ras-transforming activity, the fact that these cells are of fibroblastic origin, and can be transformed by a single hit, indicates that caution should be used in extrapolating observations from NIH 3T3 transformation assays to the situation in human tumors. Therefore, using human epithelial cell-based assays that more closely approximate the cell types where mutated ras alleles are most frequently detected may provide more realistic assays for examining the biochemical and biological consequences of aberrant Ras function in human tumors. Nevertheless, despite these cautions, these rodent transformation assays will continue to be the best and most widely applied assays for Ras biological activity.


Cancer Research | 2004

A Role for the RASSF1A Tumor Suppressor in the Regulation of Tubulin Polymerization and Genomic Stability

Michele D. Vos; Alfredo Martínez; Candice Elam; Ashraf Dallol; Barbara J. Taylor; Farida Latif; Geoffrey J. Clark

The high frequency with which the novel tumor suppressor RASSF1A is inactivated by promoter methylation suggests that it plays a key role in the development of many primary human tumors. Yet the mechanism of RASSF1A action remains unknown. We now show that RASSF1A associates with microtubules and that this association is essential for RASSF1A to mediate its growth inhibitory effects. Overexpression of RASSF1A promotes the formation of stable microtubules, whereas a dominant-negative fragment of RASSF1A destabilizes microtubule networks. The RASSF1 protein is expressed as two main isoforms, 1A and 1C. The smaller 1C isoform also associates with microtubules but is less effective at stabilizing them. Because RASSF1A and RASSF1C localize to the mitotic spindle, we examined their effects upon genomic instability. RASSF1A and RASSF1C block activated Ras-induced genomic instability. However, a point mutant of RASSF1C, identified in human tumors, was severely defective for stabilizing tubulin and was unable to block the genomic destabilizing effects of Ras. Thus, we identify a role for RASSF1A/C in the control of microtubule polymerization and potentially in the maintenance of genomic stability.


Cancer Research | 2004

RASSF1A Interacts with Microtubule-Associated Proteins and Modulates Microtubule Dynamics

Ashraf Dallol; Angelo Agathanggelou; Sarah L. Fenton; Jalal Ahmed-Choudhury; Luke B. Hesson; Michele D. Vos; Geoffrey J. Clark; Julian Downward; Eamonn R. Maher; Farida Latif

The candidate tumor suppressor gene RASSF1A is inactivated in many types of adult and childhood cancers. However, the mechanisms by which RASSF1A exerts its tumor suppressive functions have yet to be elucidated. To this end, we performed a yeast two-hybrid screen to identify novel RASSF1A-interacting proteins in a human brain cDNA library. Seventy percent of interacting clones had homology to microtubule-associated proteins, including MAP1B and VCY2IP1/C19ORF5. RASSF1A association with MAP1B and VCY2IP1/C19ORF5 was subsequently confirmed in mammalian cell lines. This suggested that RASSF1A may exert its tumor-suppressive functions through interaction with the microtubules. We demonstrate that RASSF1A associates with the microtubules, causing them to exist as hyperstabilized circular bundles. We found that two naturally occurring tumor-associated missense substitutions in the RASSF1A coding region, C65R and R257Q, perturb the association of RASSF1A with the microtubules. The C65R and R257Q in addition to VCY2IP1/C19ORF5 showed reduced ability to induce microtubule acetylation and were unable to protect the microtubules against the depolymerizing action of nocodazole. In addition, wild-type RASSF1A but not the C65R or the R257Q is able to block DNA synthesis. Our data identify a role for RASSF1A in the regulation of microtubules and cell cycle dynamics that could be part of the mechanism(s) by which RASSF1A exerts its growth inhibition on cancer cells.


Journal of Biological Chemistry | 2006

The RASSF1A tumor suppressor activates Bax via MOAP-1.

Michele D. Vos; Ashraf Dallol; Kristin Eckfeld; Nadia P. C. Allen; Howard Donninger; Luke B. Hesson; Diego F. Calvisi; Farida Latif; Geoffrey J. Clark

The novel tumor suppressor RASSF1A is frequently inactivated during human tumorigenesis by promoter methylation. RASSF1A may serve as a node in the integration of signaling pathways controlling a range of critical cellular functions including cell cycle, genomic instability, and apoptosis. The mechanism of action of RASSF1A remains under investigation. We now identify a novel pathway connecting RASSF1A to Bax via the Bax binding protein MOAP-1. RASSF1A and MOAP-1 interact directly, and this interaction is enhanced by the presence of activated K-Ras. RASSF1A can activate Bax via MOAP-1. Moreover, activated K-Ras, RASSF1A, and MOAP-1 synergize to induce Bax activation and cell death. Analysis of a tumor-derived point mutant of RASSF1A showed that the mutant was defective for the MOAP-1 interaction and for Bax activation. Moreover, inhibition of RASSF1A by shRNA impaired the ability of K-Ras to activate Bax. Thus, we identify a novel pro-apoptotic pathway linking K-Ras, RASSF1A and Bax that is specifically impaired in some human tumors.


Oncogene | 2007

RASSF6 is a novel member of the RASSF family of tumor suppressors

Nadia P. C. Allen; Howard Donninger; Michele D. Vos; Kristin Eckfeld; Luke B. Hesson; Laura E. Gordon; Michael J. Birrer; Farida Latif; Geoffrey J. Clark

RASSF family proteins are tumor suppressors that are frequently downregulated during the development of human cancer. The best-characterized member of the family is RASSF1A, which is downregulated by promoter methylation in 40–90% of primary human tumors. We now identify and characterize a novel member of the RASSF family, RASSF6. Like the other family members, RASSF6 possesses a Ras Association domain and binds activated Ras. Exogenous expression of RASSF6 promoted apoptosis, synergized with activated K-Ras to induce cell death and inhibited the survival of specific tumor cell lines. Suppression of RASSF6 enhanced the tumorigenic phenotype of a human lung tumor cell line. Furthermore, RASSF6 is often downregulated in primary human tumors. RASSF6 shares some similar overall properties as other RASSF proteins. However, there are significant differences in biological activity between RASSF6 and other family members including a discrete tissue expression profile, cell killing specificity and impact on signaling pathways. Moreover, RASSF6 may play a role in dictating the degree of inflammatory response to the respiratory syncytial virus. Thus, RASSF6 is a novel RASSF family member that demonstrates the properties of a Ras effector and tumor suppressor but exhibits biological properties that are unique and distinct from those of other family members.


Cancer Research | 2004

RASSF4/AD037 Is a Potential Ras Effector/Tumor Suppressor of the RASSF Family

Kristin Eckfeld; Luke B. Hesson; Michele D. Vos; Ivan Bièche; Farida Latif; Geoffrey J. Clark

Activated Ras proteins interact with a broad range of effector proteins to induce a diverse series of biological consequences. Although typically associated with enhanced growth and transformation, activated Ras may also induce growth antagonistic effects such as senescence or apoptosis. It is now apparent that some of the growth-inhibitory properties of Ras are mediated via the RASSF family of Ras effector/tumor suppressors. To date, four members of this family have been identified (Nore1, RASSF1, RASSF2, and RASSF3). We now identify a fifth member of this group, RASSF4 (AD037). RASSF4 shows approximately 25% identity with RASSF1A and 60% identity with RASSF2. RASSF4 binds directly to activated K-Ras in a GTP-dependent manner via the effector domain, thus exhibiting the basic properties of a Ras effector. Overexpression of RASSF4 induces Ras-dependent apoptosis in 293-T cells and inhibits the growth of human tumor cell lines. Although broadly expressed in normal tissue, RASSF4 is frequently down-regulated by promoter methylation in human tumor cells. Thus, RASSF4 appears to be a new member of the RASSF family of potential Ras effector/tumor suppressors.


Journal of Clinical Investigation | 2010

Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice

Dominic P. Del Re; Takahisa Matsuda; Peiyong Zhai; Shumin Gao; Geoffrey J. Clark; Louise van der Weyden; Junichi Sadoshima

Mammalian sterile 20-like kinase 1 (Mst1) is a mammalian homolog of Drosophila Hippo, the master regulator of cell death, proliferation, and organ size in flies. It is the chief component of the mammalian Hippo pathway and promotes apoptosis and inhibits compensatory cardiac hypertrophy, playing a critical role in mediating heart failure. How Mst1 is regulated, however, remains unclear. Using genetically altered mice in which expression of the tumor suppressor Ras-association domain family 1 isoform A (Rassf1A) was modulated in a cell type-specific manner, we demonstrate here that Rassf1A is an endogenous activator of Mst1 in the heart. Although the Rassf1A/Mst1 pathway promoted apoptosis in cardiomyocytes, thereby playing a detrimental role, the same pathway surprisingly inhibited fibroblast proliferation and cardiac hypertrophy through both cell-autonomous and autocrine/paracrine mechanisms, playing a protective role during pressure overload. In cardiac fibroblasts, the Rassf1A/Mst1 pathway negatively regulated TNF-α, a key mediator of hypertrophy, fibrosis, and resulting cardiac dysfunction. These results suggest that the functional consequence of activating the proapoptotic Rassf1A/Mst1 pathway during pressure overload is cell type dependent in the heart and that suppressing this mechanism in cardiac fibroblasts could be detrimental.


Cancer Research | 2009

NORE1A Tumor Suppressor Candidate Modulates p21CIP1 via p53

Diego F. Calvisi; Howard Donninger; Michele D. Vos; Michael J. Birrer; Laura E. Gordon; Virna D. Leaner; Geoffrey J. Clark

NORE1A (RASSF5) is a proapoptotic Ras effector that is frequently inactivated by promoter methylation in human tumors. It is structurally related to the RASSF1A tumor suppressor and is itself implicated as a tumor suppressor. In the presence of activated Ras, NORE1A is a potent inducer of apoptosis. However, when expressed at lower levels in the absence of activated Ras, NORE1A seems to promote cell cycle arrest rather than apoptosis. The mechanisms underlying NORE1A action are poorly understood. We have used microarray analysis of an inducible NORE1A system to screen for physiologic signaling targets of NORE1A action. Using this approach, we have identified several potential signaling pathways modulated by NORE1A. In particular, we identify the cyclin-dependent kinase inhibitor p21(CIP1) as a target for NORE1A activation and show that it is a vital component of NORE1A-mediated growth inhibition. In primary human hepatocellular carcinomas (HCC), loss of NORE1A expression is frequent and correlates tightly with loss of p21(CIP1) expression. NORE1A down-regulation in HCC also correlates with poor prognosis, enhanced proliferation, survival, and angiogenic tumor characteristics. Experimental inactivation of NORE1A results in the loss of p21(CIP1) expression and promotes proliferation. The best characterized activator of p21(CIP1) is the p53 master tumor suppressor. Further experiments showed that NORE1A activates p21(CIP1) via promoting p53 nuclear localization. Thus, we define the molecular basis of NORE1A-mediated growth inhibition and implicate NORE1A as a potential component of the ill-defined connection between Ras and p53.


Oncogene | 2008

Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer

Wendy N. Cooper; Rachel E. Dickinson; Ashraf Dallol; Elvira V. Grigorieva; Tatiana V. Pavlova; Luke B. Hesson; Ivan Bièche; Massimo Broggini; Eamonn R. Maher; Eugene R. Zabarovsky; Geoffrey J. Clark; Farida Latif

RASSF2 is a recently identified member of a class of novel tumour suppressor genes, all containing a ras-association domain. RASSF2 resides at 20p13, a region frequently lost in human cancers. In this report we investigated methylation status of the RASSF2 promoter CpG island in a series of breast, ovarian and non-small cell lung cancers (NSCLC). RASSF2 was frequently methylated in breast tumour cell lines (65%, 13/20) and in primary breast tumours (38%, 15/40). RASSF2 expression could be switched back on in methylated breast tumour cell lines after treatment with 5′-aza-2′deoxycytidine. RASSF2 was also frequently methylated in NSCLC tumours (44%, (22/50). The small number of corresponding normal breast and lung tissue DNA samples analysed were unmethylated. We also did not detect RASSF2 methylation in ovarian tumours (0/17). Furthermore no mutations were found in the coding region of RASSF2 in these ovarian tumours. We identified a highly conserved putative bipartite nuclear localization signal (NLS) and demonstrated that endogenous RASSF2 localized to the nucleus. Mutation of the putative NLS abolished the nuclear localization. RASSF2 suppressed breast tumour cell growth in vitro and in vivo, while the ability of NLS-mutant RASSF2 to suppress growth was much diminished. Hence we demonstrate that RASSF2 has a functional NLS that is important for its tumour suppressor gene function. Our data from this and a previous report indicate that RASSF2 is frequently methylated in colorectal, breast and NSCLC tumours. We have identified RASSF2 as a novel methylation marker for multiple malignancies and it has the potential to be developed into a valuable marker for screening several cancers in parallel using promoter hypermethylation profiles.

Collaboration


Dive into the Geoffrey J. Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele D. Vos

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

M. Lee Schmidt

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Farida Latif

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Chad A. Ellis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke B. Hesson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge