Geoffrey J. Maher
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey J. Maher.
American Journal of Human Genetics | 2009
Alice E. Davidson; I. D. Millar; Jill Urquhart; Rosemary Burgess-Mullan; Yusrah Shweikh; Neil R. A. Parry; James O'Sullivan; Geoffrey J. Maher; Martin McKibbin; Susan M. Downes; Andrew J. Lotery; Samuel G. Jacobson; Peter D. Brown; Graeme C.M. Black; Forbes D.C. Manson
Bestrophin-1 is preferentially expressed at the basolateral membrane of the retinal pigmented epithelium (RPE) of the retina. Mutations in the BEST1 gene cause the retinal dystrophies vitelliform macular dystrophy, autosomal-dominant vitreochoroidopathy, and autosomal-recessive bestrophinopathy. Here, we describe four missense mutations in bestrophin-1, three that we believe are previously unreported, in patients diagnosed with autosomal-dominant and -recessive forms of retinitis pigmentosa (RP). The physiological function of bestrophin-1 remains poorly understood although its heterologous expression induces a Cl--specific current. We tested the effect of RP-causing variants on Cl- channel activity and cellular localization of bestrophin-1. Two (p.L140V and p.I205T) produced significantly decreased chloride-selective whole-cell currents in comparison to those of wild-type protein. In a model system of a polarized epithelium, two of three mutations (p.L140V and p.D228N) caused mislocalization of bestrophin-1 from the basolateral membrane to the cytoplasm. Mutations in bestrophin-1 are increasingly recognized as an important cause of inherited retinal dystrophy.
Investigative Ophthalmology & Visual Science | 2011
Alice E. Davidson; I. D. Millar; Rosemary Burgess-Mullan; Geoffrey J. Maher; Jill Urquhart; Peter D. Brown; Graeme C.M. Black; Forbes D.C. Manson
PURPOSE Autosomal recessive bestrophinopathy (ARB) is a retinal dystrophy affecting macular and retinal pigmented epithelium function resulting from homozygous or compound heterozygous mutations in BEST1. In this study we characterize the functional implications of missense bestrophin-1 mutations that cause ARB by investigating their effect on bestrophin-1s chloride conductance, cellular localization, and stability. METHODS The chloride conductance of wild-type bestropin-1 and a series of ARB mutants were determined by whole-cell patch-clamping of transiently transfected HEK cells. The effect of ARB mutations on the cellular localization of bestrophin-1 was determined by confocal immunofluorescence on transiently transfected MDCK II cells that had been polarized on Transwell filters. Protein stability of wild-type and ARB mutant forms of bestrophin-l was determined by the addition of proteasomal or lysosomal inhibitors to transiently transfected MDCK II cells. Lysates were then analyzed by Western blot analysis. RESULTS All ARB mutants investigated produced significantly smaller chloride currents compared to wild-type bestrophin-1. Additionally, co-transfection of compound heterozygous mutants abolished chloride conductance in contrast to co-transfections of a single mutant with wild-type bestrophin-l, reflecting the recessive nature of the condition. In control experiments, expression of two dominant vitelliform macular dystrophy mutants was shown to inhibit wild-type currents. Cellular localization of ARB mutants demonstrated that the majority did not traffic correctly to the plasma membrane and that five of these seven mutants were rapidly degraded by the proteasome. Two ARB-associated mutants (p.D312N and p.V317M) that were not trafficked correctly nor targeted to the proteasome had a distinctive appearance, possibly indicative of aggresome or aggresome-like inclusion bodies. CONCLUSIONS Differences in cellular processing mechanisms for different ARB associated mutants lead to the same disease phenotype. The existence of distinct pathogenic disease mechanisms has important ramifications for potential gene replacement therapies since we show that missense mutations associated with an autosomal recessive disease have a pathogenic influence beyond simple loss of function.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Eleni Giannoulatou; Gilean McVean; Indira B. Taylor; Simon J. McGowan; Geoffrey J. Maher; Zamin Iqbal; Susanne P. Pfeifer; Isaac Turner; Emma Burkitt Wright; Jennifer Shorto; Aysha Itani; Karen Turner; Lorna Gregory; David Buck; Ewa Rajpert-De Meyts; Leendert Looijenga; Bronwyn Kerr; Andrew O.M. Wilkie; Anne Goriely
Significance Harvey rat sarcoma viral oncogene homolog (HRAS) occupies an important place in medical history, because it was the first gene in which acquired mutations that led to activation of a normal protein were associated with cancer, making it the prototype of the now canonical oncogene mechanism. Here, we explore what happens when similar HRAS mutations occur in male germ cells, an issue of practical importance because the mutations cause a serious congenital disorder, Costello syndrome, if transmitted to offspring. We provide evidence that the mutant germ cells are positively selected, leading to an increased burden of the mutations as men age. Although there are many parallels between this germline process and classical oncogenesis, there are interesting differences of detail, which are explored in this paper. The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.
Journal of Andrology | 2014
Geoffrey J. Maher; Anne Goriely; Andrew O.M. Wilkie
Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed ‘immunopositive tubules’, there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self‐renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of identifying the potential cellular source of PAE mutations.
American Journal of Human Genetics | 2016
Alice E. Davidson; Petra Liskova; Cerys J. Evans; Lubica Dudakova; Lenka Nosková; Nikolas Pontikos; Hana Hartmannová; Kateřina Hodaňová; Viktor Stránecký; Zbyněk Kozmík; Hannah J. Levis; Nwamaka Idigo; Noriaki Sasai; Geoffrey J. Maher; James Bellingham; Neyme Veli; Neil D. Ebenezer; Michael E. Cheetham; Julie T. Daniels; Caroline Thaung; Katerina Jirsova; Vincent Plagnol; Martin Filipec; Stanislav Kmoch; Stephen J. Tuft; Alison J. Hardcastle
Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.−339_361dup for CHED1 and c.−370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.−274T>G and c.−307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies.
PLOS ONE | 2012
Jasmine Lim; Geoffrey J. Maher; Gareth D. H. Turner; Wioleta Dudka-Ruszkowska; Stephen Taylor; Ewa Rajpert-De Meyts; Anne Goriely; Andrew O.M. Wilkie
The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia–caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively–represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequencies in the sperm of older men. Previous analyses of DNA from randomly selected cadaveric testes showed that the levels of the corresponding FGFR2, FGFR3 and RET mutations exhibit very uneven spatial distributions, with localised hotspots surrounded by large mutation-negative areas. These studies imply that normal testes are mosaic for clusters of mutant cells: these clusters are predicted to have altered growth and signalling properties leading to their clonal expansion (selfish spermatogonial selection), but DNA extraction eliminates the possibility to study such processes at a tissue level. Using a panel of antibodies optimised for the detection of spermatocytic seminoma, a rare tumour of spermatogonial origin, we demonstrate that putative clonal events are frequent within normal testes of elderly men (mean age: 73.3 yrs) and can be classed into two broad categories. We found numerous small (less than 200 cells) cellular aggregations with distinct immunohistochemical characteristics, localised to a portion of the seminiferous tubule, which are of uncertain significance. However more infrequently we identified additional regions where entire seminiferous tubules had a circumferentially altered immunohistochemical appearance that extended through multiple serial sections that were physically contiguous (up to 1 mm in length), and exhibited enhanced staining for antibodies both to FGFR3 and a marker of downstream signal activation, pAKT. These findings support the concept that populations of spermatogonia in individual seminiferous tubules in the testes of older men are clonal mosaics with regard to their signalling properties and activation, thus fulfilling one of the specific predictions of selfish spermatogonial selection.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Geoffrey J. Maher; Simon J. McGowan; Eleni Giannoulatou; Clare Verrill; Anne Goriely; Andrew O.M. Wilkie
Significance A major goal in genetics is to understand the processes that shape the frequency of new mutations, particularly those causing human disease. Here, we focus on specific mutations in the male germline that, although initially rare, confer a growth or survival advantage to the stem cell, leading to clonal expansion over time: a process similar to early tumor growth and currently described only in humans. Previous studies supporting this “selfish” selection quantified mutations in sperm or testis pieces using methods that destroyed their cellular origins. Here, we pinpoint and identify pathogenic mutations directly within individual seminiferous tubules, the structures that generate spermatozoa. This methodology provides unprecedented precision in documenting the spectrum and prevalence of selfish mutations in men’s testes. De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.
Cell Stem Cell | 2017
Jingtao Guo; Edward J. Grow; Chongil Yi; Hana Mlcochova; Geoffrey J. Maher; Cecilia Lindskog; Patrick J. Murphy; Candice L. Wike; Douglas T. Carrell; Anne Goriely; James M. Hotaling; Bradley R. Cairns
Summary Human adult spermatogonial stem cells (hSSCs) must balance self-renewal and differentiation. To understand how this is achieved, we profiled DNA methylation and open chromatin (ATAC-seq) in SSEA4+ hSSCs, analyzed bulk and single-cell RNA transcriptomes (RNA-seq) in SSEA4+ hSSCs and differentiating c-KIT+ spermatogonia, and performed validation studies via immunofluorescence. First, DNA hypomethylation at embryonic developmental genes supports their epigenetic “poising” in hSSCs for future/embryonic expression, while core pluripotency genes (OCT4 and NANOG) were transcriptionally and epigenetically repressed. Interestingly, open chromatin in hSSCs was strikingly enriched in binding sites for pioneer factors (NFYA/B, DMRT1, and hormone receptors). Remarkably, single-cell RNA-seq clustering analysis identified four cellular/developmental states during hSSC differentiation, involving major transitions in cell-cycle and transcriptional regulators, splicing and signaling factors, and glucose/mitochondria regulators. Overall, our results outline the dynamic chromatin/transcription landscape operating in hSSCs and identify crucial molecular pathways that accompany the transition from quiescence to proliferation and differentiation.
FEBS Letters | 2011
Geoffrey J. Maher; Emma Hilton; Jill Urquhart; Alice E. Davidson; Helen L. Spencer; Graeme C.M. Black; Forbes D.C. Manson
ZO‐1 and Tmem114 colocalize by fluorescence microscopy (View interaction).
PLOS ONE | 2017
Eleni Giannoulatou; Geoffrey J. Maher; Z. Ding; A.J. Gillis; L.C.J. Dorssers; A. Hoischen; E. Rajpert-De Meyts; Gil McVean; Andrew O.M. Wilkie; Leendert Looijenga; Anne Goriely
Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2–9) non-synonymous variants per tumor, none of which is likely to be oncogenic. The observed mutational signature of SpTs is strikingly similar to that of germline de novo mutations, mostly involving C>T transitions with a significant enrichment in the ACG trinucleotide context. The tumors exhibited extensive aneuploidy (50–99 autosomes/tumor) involving whole-chromosomes, with recurrent gains of chr9 and chr20 and loss of chr7, suggesting that aneuploidy itself represents the initiating oncogenic event. We propose that SpT etiology recapitulates the unique properties of male germ cells; because of evolutionary constraints to maintain low point mutation rate, rare tumorigenic driver events are caused by a combination of gene imbalance mediated via whole-chromosome aneuploidy. Finally, we propose a general framework of male germ cell tumor pathology that accounts for their mutational landscape, timing and cellular origin.