Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey L. Winsor is active.

Publication


Featured researches published by Geoffrey L. Winsor.


Nucleic Acids Research | 2011

Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes

Geoffrey L. Winsor; David Lam; Leanne Fleming; Raymond Lo; Matthew D. Whiteside; Nancy Y. Yu; Robert E. W. Hancock; Fiona S. L. Brinkman

Pseudomonas is a metabolically-diverse genus of bacteria known for its flexibility and leading free living to pathogenic lifestyles in a wide range of hosts. The Pseudomonas Genome Database (http://www.pseudomonas.com) integrates completely-sequenced Pseudomonas genome sequences and their annotations with genome-scale, high-precision computational predictions and manually curated annotation updates. The latest release implements an ability to view sequence polymorphisms in P. aeruginosa PAO1 versus other reference strains, incomplete genomes and single gene sequences. This aids analysis of phenotypic variation between closely related isolates and strains, as well as wider population genomics and evolutionary studies. The wide range of tools for comparing Pseudomonas annotations and sequences now includes a strain-specific access point for viewing high precision computational predictions including updated, more accurate, protein subcellular localization and genomic island predictions. Views link to genome-scale experimental data as well as comparative genomics analyses that incorporate robust genera-geared methods for predicting and clustering orthologs. These analyses can be exploited for identifying putative essential and core Pseudomonas genes or identifying large-scale evolutionary events. The Pseudomonas Genome Database aims to provide a continually updated, high quality source of genome annotations, specifically tailored for Pseudomonas researchers, but using an approach that may be implemented for other genera-level research communities.


Molecular Systems Biology | 2008

InnateDB: facilitating systems‐level analyses of the mammalian innate immune response

David J. Lynn; Geoffrey L. Winsor; Calvin Chan; Nicolas Richard; Matthew R. Laird; Aaron Barsky; Jennifer L. Gardy; Fiona M. Roche; Timothy H.W. Chan; Naisha Shah; Raymond Lo; Misbah Naseer; Jaimmie Que; Melissa Yau; Michael Acab; Dan Tulpan; Matthew D. Whiteside; Avinash Chikatamarla; Bernadette Mah; Tamara Munzner; Karsten Hokamp; Robert E. W. Hancock; Fiona S. L. Brinkman

Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems‐level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity‐relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user‐supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems‐oriented manner.


Nucleic Acids Research | 2013

InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation

Karin Breuer; Amir K. Foroushani; Matthew R. Laird; Carol Chen; Anastasia Sribnaia; Raymond Lo; Geoffrey L. Winsor; Robert E. W. Hancock; Fiona S. L. Brinkman; David J. Lynn

InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been specifically designed to facilitate systems-level analyses of mammalian innate immunity networks, pathways and genes. In this article, we provide details of recent updates and improvements to the database. InnateDB now contains >196 000 human, mouse and bovine experimentally validated molecular interactions and 3000 pathway annotations of relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and interactions). In addition, the InnateDB team has, to date, manually curated in excess of 18 000 molecular interactions of relevance to innate immunity, providing unprecedented insight into innate immunity networks, pathways and their component molecules. More recently, InnateDB has also initiated the curation of allergy- and asthma-related interactions. Furthermore, we report a range of improvements to our integrated bioinformatics solutions including web service access to InnateDB interaction data using Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology analysis for innate immunity, and the availability of new network visualizations tools. Finally, the recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism.


Nucleic Acids Research | 2015

IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis

Bhavjinder K. Dhillon; Matthew R. Laird; Julie A. Shay; Geoffrey L. Winsor; Raymond Lo; Fazmin Nizam; Sheldon K. Pereira; Nicholas Waglechner; Andrew G. McArthur; Morgan G. I. Langille; Fiona S. L. Brinkman

IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization.


Nucleic Acids Research | 2009

Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes

Geoffrey L. Winsor; Thea Van Rossum; Raymond Lo; Bhavjinder K. Khaira; Matthew D. Whiteside; Robert E. W. Hancock; Fiona S. L. Brinkman

Pseudomonas aeruginosa is a well-studied opportunistic pathogen that is particularly known for its intrinsic antimicrobial resistance, diverse metabolic capacity, and its ability to cause life threatening infections in cystic fibrosis patients. The Pseudomonas Genome Database (http://www.pseudomonas.com) was originally developed as a resource for peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome. In order to facilitate cross-strain and cross-species genome comparisons with other Pseudomonas species of importance, we have now expanded the database capabilities to include all Pseudomonas species, and have developed or incorporated methods to facilitate high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. A choice of simple and more flexible user-friendly Boolean search features allows researchers to search and compare annotations or sequences within or between genomes. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. This database aims to continue to provide a high quality, annotated genome resource for the research community and is available under an open source license.


Nucleic Acids Research | 2016

Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

Geoffrey L. Winsor; Emma J. Griffiths; Raymond Lo; Bhavjinder K. Dhillon; Julie A. Shay; Fiona S. L. Brinkman

The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches.


Bioinformatics | 2008

The Burkholderia Genome Database

Geoffrey L. Winsor; Bhavjinder Khaira; Thea Van Rossum; Raymond Lo; Matthew D. Whiteside; Fiona S. L. Brinkman

Summary: As the genome sequences of multiple strains of a given bacterial species are obtained, more generalized bacterial genome databases may be complemented by databases that are focused on providing more information geared for a distinct bacterial phylogenetic group and its associated research community. The Burkholderia Genome Database represents a model for such a database, providing a powerful, user-friendly search and comparative analysis interface that contains features not found in other genome databases. It contains continually updated, curated and tracked information about Burkholderia cepacia complex genome annotations, plus other Burkholderia species genomes for comparison, providing a high-quality resource for its targeted cystic fibrosis research community. Availability: http://www.burkholderia.com. Source code: GNU GPL. Contact: [email protected].


Nucleic Acids Research | 2004

Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation

Geoffrey L. Winsor; Raymond Lo; Shannan J. Ho Sui; Korine S.E. Ung; Shaoshan Huang; Dean Cheng; Wai Kay Ho Ching; Robert E. W. Hancock; Fiona S. L. Brinkman

Using the Pseudomonas aeruginosa Genome Project as a test case, we have developed a database and submission system to facilitate a community-based approach to continually updated genome annotation (http://www.pseudomonas.com). Researchers submit proposed annotation updates through one of three web-based form options which are then subjected to review, and if accepted, entered into both the database and log file of updates with author acknowledgement. In addition, a coordinator continually reviews literature for suitable updates, as we have found such reviews to be the most efficient. Both the annotations database and updates-log database have Boolean search capability with the ability to sort results and download all data or search results as tab-delimited files. To complement this peer-reviewed genome annotation, we also provide a linked GBrowse view which displays alternate annotations. Additional tools and analyses are also integrated, including PseudoCyc, and knockout mutant information. We propose that this database system, with its focus on facilitating flexible queries of the data and providing access to both peer-reviewed annotations as well as alternate annotation information, may be a suitable model for other genome projects wishing to use a continually updated, community-based annotation approach. The source code is freely available under GNU General Public Licence.


Nucleic Acids Research | 2017

IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets

Claire Bertelli; Matthew R. Laird; Kelly P. Williams; Britney Y. Lau; Gemma Hoad; Geoffrey L. Winsor; Fiona S. L. Brinkman

Abstract IslandViewer (http://www.pathogenomics.sfu.ca/islandviewer/) is a widely-used webserver for the prediction and interactive visualization of genomic islands (GIs, regions of probable horizontal origin) in bacterial and archaeal genomes. GIs disproportionately encode factors that enhance the adaptability and competitiveness of the microbe within a niche, including virulence factors and other medically or environmentally important adaptations. We report here the release of IslandViewer 4, with novel features to accommodate the needs of larger-scale microbial genomics analysis, while expanding GI predictions and improving its flexible visualization interface. A user management web interface as well as an HTTP API for batch analyses are now provided with a secured authentication to facilitate the submission of larger numbers of genomes and the retrieval of results. In addition, IslandViewers integrated GI predictions from multiple methods have been improved and expanded by integrating the precise Islander method for pre-computed genomes, as well as an updated IslandPath-DIMOB for both pre-computed and user-supplied custom genome analysis. Finally, pre-computed predictions including virulence factors and antimicrobial resistance are now available for 6193 complete bacterial and archaeal strains publicly available in RefSeq. IslandViewer 4 provides key enhancements to facilitate the analysis of GIs and better understand their role in the evolution of successful environmental microbes and pathogens.


BMC Systems Biology | 2010

Curating the innate immunity interactome.

David J. Lynn; Calvin Chan; Misbah Naseer; Melissa Yau; Raymond Lo; Anastasia Sribnaia; Giselle Ring; Jaimmie Que; Kathleen Wee; Geoffrey L. Winsor; Matthew R. Laird; Karin Breuer; Amir K. Foroushani; Fiona S. L. Brinkman; Robert E. W. Hancock

BackgroundThe innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http://www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.ResultsHere, we describe the InnateDB curation project, which is manually annotating the human and mouse innate immunity interactome in rich contextual detail, and present our novel curation software system, which has been developed to ensure interactions are curated in a highly accurate and data-standards compliant manner. To date, over 13,000 interactions (protein, DNA and RNA) have been curated from the biomedical literature. Here, we present data, illustrating how InnateDB curation of the innate immunity interactome has greatly enhanced network and pathway annotation available for systems-level analysis and discuss the challenges that face such curation efforts. Significantly, we provide several lines of evidence that analysis of the innate immunity interactome has the potential to identify novel signalling, transcriptional and post-transcriptional regulators of innate immunity. Additionally, these analyses also provide insight into the cross-talk between innate immunity pathways and other biological processes, such as adaptive immunity, cancer and diabetes, and intriguingly, suggests links to other pathways, which as yet, have not been implicated in the innate immune response.ConclusionsIn summary, curation of the InnateDB interactome provides a wealth of information to enable systems-level analysis of innate immunity.

Collaboration


Dive into the Geoffrey L. Winsor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond Lo

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

Robert E. W. Hancock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin Chan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jaimmie Que

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Melissa Yau

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge