Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey M. Hudson is active.

Publication


Featured researches published by Geoffrey M. Hudson.


Journal of The International Society of Sports Nutrition | 2008

Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals

Matthew B. Cooke; M Iosia; Thomas W. Buford; Brian Shelmadine; Geoffrey M. Hudson; Chad M. Kerksick; Christopher Rasmussen; Mike Greenwood; Brian Leutholtz; Darryn S. Willoughby; Richard B. Kreider

BackgroundTo determine whether acute (single dose) and/or chronic (14-days) supplementation of CoQ10 will improve anaerobic and/or aerobic exercise performance by increasing plasma and muscle CoQ10 concentrations within trained and untrained individuals.MethodsTwenty-two aerobically trained and nineteen untrained male and female subjects (26.1 ± 7.6 yrs, 172 ± 8.7 cm, 73.5 ± 17 kg, and 21.2 ± 7.0%) were randomized to ingest in a double-blind manner either 100 mg of a dextrose placebo (CON) or a fast-melt CoQ10 supplement (CoQ10) twice a day for 14-days. On the first day of supplementation, subjects donated fasting blood samples and a muscle biopsy. Subjects were then given 200 mg of the placebo or the CoQ10 supplement. Sixty minutes following supplement ingestion, subjects completed an isokinetic knee extension endurance test, a 30-second wingate anaerobic capacity test, and a maximal cardiopulmonary graded exercise test interspersed with 30-minutes of recovery. Additional blood samples were taken immediately following each exercise test and a second muscle biopsy sample was taken following the final exercise test. Subjects consumed twice daily (morning and night), 100 mg of either supplement for a period of 14-days, and then returned to the lab to complete the same battery of tests. Data was analyzed using repeated measures ANOVA with an alpha of 0.05.ResultsPlasma CoQ10 levels were significantly increased following 2 weeks of CoQ10 supplementation (p < 0.001); while a trend for higher muscle CoQ10 levels was observed after acute CoQ10 ingestion (p = 0.098). A trend for lower serum superoxide dismutase (SOD) was observed following acute supplementation with CoQ10 (p = 0.06), whereas serum malondialdehyde (MDA) tended to be significantly higher (p < 0.05). Following acute ingestion of CoQ10, plasma CoQ10 levels were significantly correlated to muscle CoQ10 levels; maximal oxygen consumption; and treadmill time to exhaustion. A trend for increased time to exhaustion was observed following 2 weeks of CoQ10 supplementation (p = 0.06).ConclusionAcute supplementation with CoQ10 resulted in higher muscle CoQ10 concentration, lower serum SOD oxidative stress, and higher MDA levels during and following exercise. Chronic CoQ10 supplementation increased plasma CoQ10 concentrations and tended to increase time to exhaustion. Results indicate that acute and chronic supplementation of CoQ10 may affect acute and/or chronic responses to various types of exercise.


Applied Physiology, Nutrition, and Metabolism | 2009

Effects of eccentric treadmill exercise on inflammatory gene expression in human skeletal muscle.

Thomas W. Buford; Matthew B. Cooke; Brian Shelmadine; Geoffrey M. Hudson; Liz ReddL. Redd; Darryn S. Willoughby

The present study examined the skeletal muscle expression of several genes related to the inflammatory process before and after a bout of downhill running. Twenty-nine males between the ages of 18 and 35 years performed a 45-min downhill (-17.5%) treadmill protocol at 60% of maximal oxygen consumption. Venous bloods samples and muscle biopsy samples from the vastus lateralis were donated prior to and at 3-h and 24-h postexercise, along with ratings of perceived muscle soreness. Serum creatine kinase (CK) was determined, as was skeletal muscle gene expression of interleukin (IL)-6, IL-8, IL-12 (p35), tumor necrosis factor-alpha (TNF-alpha), IL-1beta, cyclooxygenase 2 (COX2), and nuclear factor kappa B (NFkB) (p105/p50). Gene expression was analyzed using RT-PCR and compared with a standard housekeeping gene (beta-actin). Data were analyzed for statistical differences using multivariate analysis of variance with univariate follow-up. In addition, Pearson correlations were conducted to determine if any significant relationship exists between any of these transcripts and both CK and muscle soreness. Significant (p < 0.05) up-regulations in IL-6, IL-8, and COX2 mRNA expression were observed compared with baseline, whereas no significant changes for IL-12, IL-1beta, TNF-alpha, or NFkB were noted. Significant increases in IL-6 mRNA were observed at 3 h (p < 0.001) and 24 h (p = 0.043), whereas significant increases in IL-8 (p = 0.001) and COX2 (p = 0.046) mRNA were observed at 3-h postexercise. In addition, muscle soreness was significantly correlated with IL-8 at 24 h (r = -0.370; p = 0.048), whereas CK was significantly related to NFkB at baseline (r = -0.460; p = 0.012). These data indicate that increases in the mRNA expression of IL-6, IL-8, and COX2 occur in the vastus lateralis as a result of damaging eccentric exercise in young, recreationally trained males. Further, it appears that IL-8 transcription may play some role in inhibiting postexercise muscle soreness, possibly through regulation of angiogenesis.


Journal of The International Society of Sports Nutrition | 2009

Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males

Brian Shelmadine; Matthew B. Cooke; Thomas W. Buford; Geoffrey M. Hudson; Liz Redd; Brian Leutholtz; Darryn S. Willoughby

PurposeThis study determined the effects of 28 days of heavy resistance exercise combined with the nutritional supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers.MethodsEighteen non-resistance-trained males participated in a resistance training program (3 × 10-RM) 4 times/wk for 28 days while also ingesting 27 g/day of placebo (PL) or NO-Shotgun® (NO) 30 min prior to exercise. Data were analyzed with separate 2 × 2 ANOVA and t-tests (p < 0.05).ResultsTotal body mass was increased in both groups (p = 0.001), but without any significant increases in total body water (p = 0.77). No significant changes occurred with fat mass (p = 0.62); however fat-free mass did increase with training (p = 0.001), and NO was significantly greater than PL (p = 0.001). Bench press strength for NO was significantly greater than PL (p = 0.003). Myofibrillar protein increased with training (p = 0.001), with NO being significantly greater than PL (p = 0.019). Serum IGF-1 (p = 0.046) and HGF (p = 0.06) were significantly increased with training and for NO HGF was greater than PL (p = 0.002). Muscle phosphorylated c-met was increased with training for both groups (p = 0.019). Total DNA was increased in both groups (p = 0.006), while NO was significantly greater than PL (p = 0.038). For DNA/protein, PL was decreased and NO was not changed (p = 0.014). All of the myogenic regulatory factors were increased with training; however, NO was shown to be significantly greater than PL for Myo-D (p = 0.008) and MRF-4 (p = 0.022). No significant differences were located for any of the whole blood and serum clinical chemistry markers (p > 0.05).ConclusionWhen combined with heavy resistance training for 28 days, NO-Shotgun® is not associated with any negative side effects, nor does it abnormally impact any of the clinical chemistry markers. Rather, NO-Shotgun® effectively increases muscle strength and mass, myofibrillar protein content, and increases the content of markers indicative of satellite cell activation.


Journal of The American Dietetic Association | 2011

A Structured Diet and Exercise Program Promotes Favorable Changes in Weight Loss, Body Composition, and Weight Maintenance

Richard B. Kreider; Monica C. Serra; Kristen M. Beavers; Jen Moreillon; Julie Kresta; M Byrd; Jonathan Oliver; Jean Gutierrez; Geoffrey M. Hudson; E Deike; Brian Shelmadine; Patricia Leeke; C Rasmussen; Mike Greenwood; Matthew B. Cooke; Chad M. Kerksick; J Campbell; Jeannemarie Beiseigel; Satya S. Jonnalagadda

BACKGROUND A number of diet and exercise programs purport to help promote and maintain weight loss. However, few studies have compared the efficacy of different methods. OBJECTIVE To determine whether adherence to a meal-replacement-based diet program (MRP) with encouragement to increase physical activity is as effective as following a more structured meal-plan-based diet and supervised exercise program (SDE) in sedentary obese women. DESIGN Randomized comparative effectiveness trial. PARTICIPANTS/SETTING From July 2007 to October 2008, 90 obese and apparently healthy women completed a 10-week university-based weight loss trial while 77 women from this cohort also completed a 24-week weight maintenance phase. INTERVENTION Participants were matched and randomized to participate in an MRP or SDE program. MAIN OUTCOME MEASURES Weight loss, health, and fitness-related data were assessed at 0 and 10 weeks on all subjects as well as at 14, 22, and 34 weeks on participants who completed the weight maintenance phase. STATISTICAL ANALYSES PERFORMED Data were analyzed by multivariate analysis of variance for repeated measures. RESULTS During the 10-week weight loss phase, moderate and vigorous physical activity levels were significantly higher in the SDE group with no differences observed between groups in daily energy intake. The SDE group lost more weight (-3.1 ± 3.7 vs -1.6 ± 2.5 kg; P = 0.03); fat mass (-2.3 ± 3.5 vs -0.9 ± 1.6 kg; P = 0.02); centimeters from the hips (-4.6 ± 7 vs -0.2 ± 6 cm; P = 0.002) and waist (-2.9 ± 6 vs -0.6 ± 5 cm; P = 0.05); and, experienced a greater increase in peak aerobic capacity than participants in the MRP group. During the 24-week maintenance phase, participants in the SDE group maintained greater moderate and vigorous physical activity levels, weight loss, fat loss, and saw greater improvement in maximal aerobic capacity and strength. CONCLUSIONS In sedentary and obese women, an SDE-based program appears to be more efficacious in promoting and maintaining weight loss and improvements in markers of health and fitness compared to an MRP type program with encouragement to increase physical activity.


Medicine and Science in Sports and Exercise | 2009

Protease Supplementation Improves Muscle Function after Eccentric Exercise

Thomas W. Buford; Matthew B. Cooke; Liz Redd; Geoffrey M. Hudson; Brian Shelmadine; Darryn S. Willoughby

UNLABELLED Protease supplementation has been purported to reduce the damaging effects of eccentric exercise and accelerate recovery of muscle function, possibly by regulating inflammation. PURPOSE To determine the effectiveness of protease supplementation in attenuating eccentric exercise-induced skeletal muscle damage and inflammation. METHODS After standard physical and hemodynamic assessment and fasting venous blood samples, subjects performed isokinetic extension/flexion of the quadriceps group on a Biodex isokinetic dynamometer at 60°·s(-1), followed by VO2max testing. Subjects were randomly assigned to consume 5.83 g daily of either a cellulose placebo (N = 15; 22.27 ± 3.33 yr, 71.17 ± 2.91 inches, 179.4 ± 24.05 lb, 50.55 ± 5.66 mL·kg(-1)·min(-1)) or a proteolytic supplement containing fungal proteases, bromelain, and papain (N = 14; 22.85 ± 5.9 yr, 70.0 ± 2.67 inches, 173.11 ± 29.94 lb, 49.69 ± 6.15 mL·kg(-1)·min(-1)) for a period of 21 d. After the supplementation period, subjects donated blood samples before performing a 45-min downhill (-17.5%) treadmill protocol at 60% of VO2max. An additional four blood draws and three muscle function tests were performed during the next 48 h. Blood was analyzed using standard hematology and clinical chemistry, enzyme-linked immunosorbent assay, and bead array. Blood data were analyzed using multivariate analysis of variance (MANOVA) with repeated measures, whereas Biodex data were analyzed using a MANOVA on %Δ values. RESULTS Significant group differences (T1-T3, P = 0.033; T1-T4, P = 0.043) and another strong trend (T1-3 h, P = 0.055) were observed for flexion (peak torque %Δ at 60°·s(-1)) indicating higher force production in the protease group. Significant group × time interactions (P < 0.05) were observed, including elevations in circulating eosinophils and basophils in the protease group coinciding with lower levels of serum cyclooxygenase 2, interleukin 6, and interleukin 12 in this group. CONCLUSIONS Protease supplementation seems to attenuate muscle strength losses after eccentric exercise by regulating leukocyte activity and inflammation.


Journal of The International Society of Sports Nutrition | 2008

The acute effects of the thermogenic supplement Meltdown on energy expenditure, fat oxidation, and hemodynamic responses in young, healthy males

J Jitomir; Erica Nassar; J Culbertson; Jen Moreillon; Thomas W. Buford; Geoffrey M. Hudson; Matthew B. Cooke; Richard B. Kreider; Darryn S. Willoughby

The purpose of this study was to evaluate the effects of a thermogenic supplement, Meltdown, on energy expenditure, fat oxidation, and hemodynamics before and after maximal treadmill exercise. In a double-blind, randomized, placebo-controlled, cross-over design, 12 male participants underwent two testing sessions after consuming either the Meltdown or placebo supplement. While in a fasted state, participants rested for one hour, orally ingested either Meltdown or placebo and rested for another hour, performed a maximal treadmill exercise test, and then rested for another hour. Throughout the testing protocol, resting energy expenditure (REE) and respiratory exchange ratio (RER) were assessed. In addition, heart rate (HR) and blood pressure (BP) were assessed before and after exercise. Meltdown increased REE significantly more than placebo at 45 min (1.44 ± 0.25 vs. 1.28 ± 0.23 kcal/min; p = 0.003), 60 min (1.49 ± 0.28 vs. 1.30 ± 0.22 kcal/min; p = 0.025), and 120 min (1.51 ± 0.26 vs. 1.33 ± 0.27 kcals/min; p = 0.014) post-ingestion. Meltdown significantly decreased RER at 30 min (0.84 ± 0.03 vs. 0.91 ± 0.04; p = 0.022) and 45 min post-ingestion (0.82 ± 0.04 vs. 0.89 ± 0.05; p = 0.042), and immediately post-exercise (0.83 ± 0.05 vs. 0.90 ± 0.07; p = 0.009). Furthermore, over the course of the evaluation period, area under the curve assessment demonstrated that REE was significantly increased with Meltdown compared to placebo (992.5 ± 133.1 vs. 895.1 ± 296.1 kcals; p = 0.043), while RER was significantly less than placebo (5.55 ± 0.61 vs. 5.89 ± 0.44; p = 0.002) following ingestion. HR and BP were not significantly affected prior to exercise with either supplement (p > 0.05) and the exercise-induced increases for HR and BP decreased into recovery and were not different between supplements (p > 0.05). These data suggest that Meltdown enhances REE and fat oxidation more than placebo for several hours after ingestion in fully rested and post-exercise states without any adverse hemodynamic responses associated with maximal exercise.


Journal of Medicinal Food | 2010

The Lipid-Lowering Effects of 4 Weeks of Daily Soymilk or Dairy Milk Ingestion in a Postmenopausal Female Population

Kristen M. Beavers; Monica C. Serra; Daniel P. Beavers; Geoffrey M. Hudson; Darryn S. Willoughby

Alterations in plasma cholesterol concentrations, especially increases in low-density lipoprotein (LDL), are well-known risk factors in the development of atherosclerosis. Numerous studies have examined the lipid-lowering effects of functional soy-containing foods, but few have specifically examined soymilk, with equivocal findings reported. In September 2008, a single-blind, randomized, controlled trial was conducted on 32 postmenopausal women at Baylor University, Waco, TX, USA. After a 2-week run-in period, subjects were randomly assigned to consume three servings of vanilla soy (n = 16) or reduced-fat dairy (n = 16) milk per day for 4 weeks. Plasma lipid profiles were obtained pre- and post-supplementation. Plasma high-density lipoprotein, LDL, and triglycerides were not significantly different between groups post-intervention (P = .45) or from baseline (P = .83). Separate analysis of plasma total cholesterol levels yielded similar results (P = .19 and P = .92, respectively). Furthermore, subanalyses controlling for dyslipidemia (n = 23) and lipid-lowering medication usage (n = 28) did not significantly alter results. Despite good dietary compliance, our study failed to show a significant hypocholesterolemic effect of soymilk consumption in this postmenopausal female population. Potential reasons for this nonsignificant finding are discussed, and future research directions are presented.


Nutrition Journal | 2011

Bioactive properties and clinical safety of a novel milk protein peptide

Richard B. Kreider; M Iosia; Matthew B. Cooke; Geoffrey M. Hudson; C Rasmussen; Helen Chen; Olof Mollstedt; Men-Hwei Tsai

BackgroundMilk protein fractions and peptides have been shown to have bioactive properties. This preliminary study examined the potential mechanisms of action and clinical safety of novel milk protein peptide (MP).FindingsA novel MP mixture inhibits the tyrosine kinase activity of epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor 2 (VEGFR2), and insulin receptor (IR) with IC50 of 9.85 μM, 7.7 μM, and 6.18 μM respectively. In vitro, this multi-kinase inhibitor causes apoptosis in HT-29 colon cancer cells, and in a C. elegans worm study, showed a weak but significant increase in lifespan. A six week double-blind, placebo-controlled study involving 73 healthy volunteers demonstrated that the MP mixture is safe to consume orally. All clinical blood markers remained within normal levels and no clinically significant side effects were reported. There was some evidence of improved insulin sensitivity, neutrophil-to-lymphocyte ratio (NLR), and quality of life assessment of role of physical function.ConclusionsThese data in combination with the observed in vitro anti-cancer properties warrant further clinical studies to investigate this MP mixture as a potential clinical nutrition intervention for improving the quality of life and clinical outcomes in cancer patients.Trial RegistrationNCT01412658


Journal of The International Society of Sports Nutrition | 2011

Ingestion of 10 grams of whey protein prior to a single bout of resistance exercise does not augment Akt/mTOR pathway signaling compared to carbohydrate

Matthew B. Cooke; Paul La Bounty; Thomas W. Buford; Brian Shelmadine; Liz Redd; Geoffrey M. Hudson; Darryn S. Willoughby

BackgroundThis study examined the effects of a whey protein supplement in conjunction with an acute bout of lower body resistance exercise, in recreationally-active males, on serum insulin and insulin like growth factor 1 (IGF-1) and Akt/mTOR signaling markers indicative of muscle protein synthesis: insulin receptor substrate 1 (IRS-1), AKT, mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K) and 4E-binding protein 1 (4E-BP1).MethodsIn a randomized, double-blind, cross-over design, 10 males ingested 1 week apart, either 10 g of whey protein (5.25 g EAAs) or carbohydrate (maltodextrose), 30 min prior to a lower-body resistance exercise bout. The resistance exercise bout consisted of 4 sets of 8-10 reps at 80% of the one repetition maximum (RM) on the angled leg press and knee extension exercises. Blood and muscle samples were obtained prior to, and 30 min following supplement ingestion and 15 min and 120 min post-exercise. Serum and muscle data were analyzed using two-way ANOVA.ResultsNo significant differences were observed for IGF-1 (p > 0.05). A significant main effect for Test was observed for serum insulin (p < 0.01) at 30 min post-ingestion and 15 and 120 min post-exercise, with no Supplement × Test interaction (p > 0.05). For the Akt/MTOR signaling intermediates, no significant Supplement × Test interactions were observed (p > 0.05). However, significant main effects for Test were observed for phosphorylated concentrations of IRS, mTOR, and p70S6K, as all were elevated at 15 min post-exercise (p < 0.05). Additionally, a significant main effect for Test was noted for 4E-BP1 (p < 0.05), as it was decreased at 15 min post-exercise.ConclusionIngestion of 10 g of whey protein prior to an acute bout of lower body resistance exercise had no significant preferential effect compared to carbohydrate on systemic and cellular signaling markers indicative of muscle protein synthesis in untrained individuals.


Aging Clinical and Experimental Research | 2011

Differential gene expression of FoxO1, ID1, and ID3 between young and older men and associations with muscle mass and function

Thomas W. Buford; Matthew B. Cooke; Brian Shelmadine; Geoffrey M. Hudson; Liz Redd; Darryn S. Willoughby

Background and aims: Aging is associated with significant losses of skeletal muscle mass and function. Numerous biochemical molecules have been implicated in the development of these age-related changes, however evidence from human models is sparse. Assessment of transcript expression is useful as it requires minimal tissue and may potentially be used in clinical trials. This study aimed to compare mRNA expression of proteolytic genes in skeletal muscle of young (18–35 yrs) and older (55–75 yrs) men. Methods: Muscle tissue was obtained from young (n=14, 21.35±01.03 yrs) and older (n=13, 63.85±1.83 yrs) men using percutaneous biopsy, and transcript expression was quantified using real-time polymerase chain reaction. Lower limb muscle mass was assessed using DEXA while concentric peak torque (PT) and power were assessed via isokinetic dynamometer. When age-related differences in mRNA expression were observed, Pearson correlation coefficients were obtained to examine the relationship of transcripts to muscle mass and function. Results: Older muscle contained significantly more transcript for Forkhead Box O 1 (FoxO1, p=0.001), Inhibitor of DNA binding 1 (ID1, p=0.009), and Inhibitor of DNA Binding 3 (ID3, p=0.043) than young muscle. FoxO1 was significantly correlated with lean mass (R=−0.44, p=0.023) and PT (R=−0.40, p=0.046) while ID3 was significantly correlated with PT (R=−0.58, p=0.001) and power (R=−0.65, p<0.001). Moreover, ID1 was significantly correlated with all assessed measures of muscle function - mass (R=−0.39, p=0.046), PT (R=−0.53, p=0.005), and power (R=−0.520, p=0.005). Conclusion: These data suggest that FoxO1, ID1, and ID3 are potentially useful as clinical biomarkers of age-related muscle atrophy and dysfunction.

Collaboration


Dive into the Geoffrey M. Hudson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas W. Buford

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge