Geoffrey M. Spinks
University of Wollongong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey M. Spinks.
Journal of Solid State Electrochemistry | 2002
Geoffrey M. Spinks; Anton J. Dominis; Gordon G. Wallace; Dennis E. Tallman
This paper reviews the literature describing the effects of conducting polymer coatings on the corrosion rate of ferrous alloys (iron, steel and stainless steel). The literature is interpreted in terms of the proposed mechanisms of corrosion protection: barrier, inhibitor, anodic protection and the mediation of oxygen reduction. The most intriguing aspect of the reported literature are the studies demonstrating corrosion protection when deliberate defects were introduced into the coating to expose the bare metal. These studies show that protection afforded by conducting polymer coatings is not due to simple barrier protection or inhibition alone. Many studies illustrate that the polymer/metal interface is modified to produce passivating oxide layers and that charge transfer reactions occur between the metal and polymer. These studies support the proposed anodic protection mechanism, as do the reports of significant ennoblism. On the other hand, there is considerable variation in the reported shift in corrosion potential and these highlight the influence of substrate preparation, coating composition and mode of application and the nature of the electrolyte on the corrosion protection provided by the conducting polymer. For example, the evidence suggests that the emeraldine base form of polyaniline is superior to the emeraldine salt in terms of corrosion protection for steel. However, the number of direct comparisons is small and the reasons for the differences are not well understood. Also not well understood are the role of the counterion release and local pH changes on pinhole protection. It is also argued that the conducting polymer reduces the likelihood of large increases in pH at the polymer/metal interface and so stabilizes the coating against cathodic disbondment. Further work is clearly needed to increase the protection period by further studies on the corrosion protection mechanism so that the polymer composition and processing methods may be optimized.
Nature Communications | 2013
Jae Ah Lee; Min-Kyoon Shin; Shi Hyeong Kim; Hyun U Cho; Geoffrey M. Spinks; Gordon G. Wallace; Marcio Dias Lima; Xavier Lepró; Mikhail E. Kozlov; Ray H. Baughman; Seon Jeong Kim
Flexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fast-ion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into ~20 μm diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to ~179 F cm(-3)) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to ~80 V s(-1) and ~20 V s(-1) for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.
Science | 2014
Carter S. Haines; Marcio Dias Lima; Na Li; Geoffrey M. Spinks; Javad Foroughi; John D. W. Madden; Shi Hyeong Kim; Shaoli Fang; Monica Jung de Andrade; Fatma Göktepe; Özer Göktepe; Seyed M. Mirvakili; Sina Naficy; Xavier Lepró; Jiyoung Oh; Mikhail E. Kozlov; Seon Jeong Kim; Xiuru Xu; Benjamin J. Swedlove; Gordon G. Wallace; Ray H. Baughman
Toward an Artificial Muscle In designing materials for artificial muscles, the goals are to find those that will combine high strokes, high efficiency, long cycle life, low hysteresis, and low cost. Now, Haines et al. (p. 868; see the Perspective by Yuan and Poulin) show that this is possible. Twisting high-strength, readily available polymer fibers, such as those used for fishing lines or sewing thread, to the point where they coil up, allowed construction of highly efficient actuators that could be triggered by a number of stimuli. Polymer fibers can be transformed into highly efficient artificial muscles through the application of extreme twist. [Also see Perspective by Yuan and Poulin] The high cost of powerful, large-stroke, high-stress artificial muscles has combined with performance limitations such as low cycle life, hysteresis, and low efficiency to restrict applications. We demonstrated that inexpensive high-strength polymer fibers used for fishing line and sewing thread can be easily transformed by twist insertion to provide fast, scalable, nonhysteretic, long-life tensile and torsional muscles. Extreme twisting produces coiled muscles that can contract by 49%, lift loads over 100 times heavier than can human muscle of the same length and weight, and generate 5.3 kilowatts of mechanical work per kilogram of muscle weight, similar to that produced by a jet engine. Woven textiles that change porosity in response to temperature and actuating window shutters that could help conserve energy were also demonstrated. Large-stroke tensile actuation was theoretically and experimentally shown to result from torsional actuation.
Science | 2011
Javad Foroughi; Geoffrey M. Spinks; Gordon G. Wallace; Jiyoung Oh; Mikhail E. Kozlov; Shaoli Fang; Tissaphern Mirfakhrai; John D. W. Madden; Min Kyoon Shin; Seon Jeong Kim; Ray H. Baughman
Carbon nanotube yarns are used to make fast, multirotational torsional actuators. Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
Science | 2012
Marcio Dias Lima; Na Li; Monica Jung de Andrade; Shaoli Fang; Jiyoung Oh; Geoffrey M. Spinks; Mikhail E. Kozlov; Carter S. Haines; Dongseok Suh; Javad Foroughi; Seon Jeong Kim; Yongsheng Chen; Taylor Ware; Min Kyoon Shin; Leonardo D. Machado; Alexandre F. Fonseca; John D. W. Madden; Walter Voit; Douglas S. Galvao; Ray H. Baughman
Nanotube Yarn Actuators Actuators are used to convert heat, light, or electricity into a twisting or tensile motion, and are often described as artificial muscles. Most materials that show actuation either provide larger forces with small-amplitude motions, such as the alloy NiTi, or provide larger motions with much less force, such as polymeric materials. Other problems with such actuators can include slow response times and short lifetimes. Lima et al. (p. 928, see the Perspective by Schulz) show that a range of guest-filled, twist-spun carbon nanotube yarns can be used for linear or torsional actuation, can solve the problems of speed and lifetime, and do not require electrolytes for operation. Thermally driven actuators use a guest material within carbon nanotube yarns to generate fast torsional and tensile motions. Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.
Nature Communications | 2012
Min Kyoon Shin; Bommy Lee; Shi Hyeong Kim; Jae Ah Lee; Geoffrey M. Spinks; Sanjeev Gambhir; Gordon G. Wallace; Mikhail E. Kozlov; Ray H. Baughman; Seon Jeong Kim
The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.
Australian Journal of Chemistry | 2011
Sina Naficy; Hugh R. Brown; Joselito M. Razal; Geoffrey M. Spinks; Philip G. Whitten
In this review we highlight new developments in tough hydrogel materials in terms of their enhanced mechanical performance and their corresponding toughening mechanisms. These mechanically robust hydrogels have been developed over the past 10 years with many now showing mechanical properties comparable with those of natural tissues. By first reviewing the brittleness of conventional synthetic hydrogels, we introduce each new class of tough hydrogel: homogeneous gels, slip-link gels, double-network gels, nanocomposite gels and gels formed using poly-functional crosslinkers. In each case we provide a description of the fracture process that may be occurring. With the exception of double network gels where the enhanced toughness is quite well understood, these descriptions remain to be confirmed. We also introduce material property charts for conventional and tough synthetic hydrogels to illustrate the wide range of mechanical and swelling properties exhibited by these materials and to highlight links between these properties and the network topology. Finally, we provide some suggestions for further work particularly with regard to some unanswered questions and possible avenues for further enhancement of gel toughness.
Smart Materials and Structures | 2003
May Tahhan; Van-Tan Truong; Geoffrey M. Spinks; Gordon G. Wallace
The actuation of a single-wall carbon nanotube (CNT) mat, an electrically conducting polyaniline (PAn) film and a composite of these two materials has been investigated in NaNO3 (1 M), NaCl (1 and 3 M) and HCl (1 M) solutions. The expansion and contraction patterns of the PAn, CNT and CNT/PAn samples are similar in these solutions. Fabrication of the CNT/PAn samples by coating PAn (CNT:PAn = 3:1 by weight) substantially enhanced the actuation strain (0.2?0.5%) of the CNT/PAn composite compared to the low actuation strain (0.06%) of the pure CNT mat. The actuation of PAn and CNT operates via different mechanisms. Non-Faradaic electrochemical charging of the CNT bundles is the main factor behind the expansion of CNT, while the expansion/contraction of PAn is dependent on the redox reactions of the polymer. The displacement pattern of the composite is dominated by the PAn component. However, when a load is applied to the sample (up to 1.2 MPa) the CNT/PAn sample behaves similarly to CNT samples, i.e. the actuation strain is almost independent of the applied loads in contrast to pure conducting polymers. This implies that the reinforcing effect of the CNT component is possibly due to the inherent high Youngs modulus of the CNT bundles (~640?GPa).
Electrochimica Acta | 2003
Dezhi Zhou; Geoffrey M. Spinks; Gordon G. Wallace; Churat Tiyapiboonchaiya; Douglas R. MacFarlane; Maria Forsyth; Jiazeng Sun
Novel polymer-in-ionic liquid electrolytes (PILEs) have been developed for solid state electrochemical actuators based on polypyrrole. The active polymer electrodes are readily oxidized/reduced without degradation in the PILE. It was found that the actuator cycle life is significantly enhanced in the PILE as is the ‘shelf life’ of the device.
Scientific Reports | 2015
Changsoon Choi; Shi Hyeong Kim; Hyeon Jun Sim; Jae Ah Lee; A Young Choi; Youn Tae Kim; Xavier Lepró; Geoffrey M. Spinks; Ray H. Baughman; Seon Jeong Kim
Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet, and then electrochemically depositing pseudocapacitive MnO2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction, and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm2, 2.6 μWh/cm2 and 66.9 μW/cm2, respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.