Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey N. Maksym is active.

Publication


Featured researches published by Geoffrey N. Maksym.


Journal of Magnetic Resonance Imaging | 2013

Hyperpolarized 3He and 129Xe MRI: Differences in asthma before bronchodilation

Sarah Svenningsen; Miranda Kirby; Danielle Starr; Del Leary; Andrew Wheatley; Geoffrey N. Maksym; David G. McCormack; Grace Parraga

To compare hyperpolarized helium‐3 (3He) and xenon‐129 (129Xe) MRI in asthmatics before and after salbutamol inhalation.


European Respiratory Journal | 2007

Airway resistance variability and response to bronchodilator in children with asthma

Carolyn A. Lall; Natalie Cheng; Paul Hernandez; Paul T. Pianosi; Zhang Dali; Alyaa Abouzied; Geoffrey N. Maksym

Variability of airway function is a feature of asthma, spanning timescales from months to seconds. Short-term variation in airway resistance (Rrs) is elevated in asthma and is thought to be due to increased variation in the contractile activation of airway smooth muscle. If true, then variation in Rrs should decrease in response to bronchodilators, but this has not been investigated. Using the forced oscillation technique, Rrs and the variation in Rrs from 4–34 Hz were measured in 39 children with well-controlled mild-to-moderate asthma and 31 healthy controls (7–13 yrs) before and after an inhaled bronchodilator (200 µg salbutamol) or placebo. In agreement with other findings, baseline Rrs at all frequencies and the sd of Rrs (Rrs sd) below 14 Hz were found to be elevated in asthma while neither forced expiratory volume in one second nor the mean forced expiratory flow between 25 and 75% of forced vital capacity were different compared with controls. The present authors found that Rrs sd changed the most of any measurement in asthma, and this was the only measurement that changed significantly more in children with asthma following bronchodilator administration. The present results show that like airway narrowing, short-term airway variability of resistance may be a characteristic feature of asthma that may be useful for monitoring response to therapy.


Respirology | 2012

Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging.

Stephen Costella; Miranda Kirby; Geoffrey N. Maksym; David G. McCormack; Nigel A. M. Paterson; Grace Parraga

Background and objective:  Spirometry is insensitive to small airway abnormalities in asthma. Our objective was to evaluate regional lung structure and function using hyperpolarized 3He magnetic resonance imaging (MRI) before, during and after a methacholine challenge (MCh).


Journal of Applied Physiology | 2011

Temporal complexity in clinical manifestations of lung disease

Urs Frey; Geoffrey N. Maksym; Béla Suki

In this review, we summarize results of recent research on the temporal variability of lung function, symptoms, and inflammatory biomarkers. Specifically, we demonstrate how fluctuation analysis borrowed from statistical physics can be used to gain insight into neurorespiratory control and complex chronic dynamic diseases such as asthma viewed as a system of interacting components (e.g., inflammatory, immunological, and mechanical). Fluctuation analysis tools are based on quantifying the distribution and the short- and long-term temporal history of tidal breathing and lung function parameters to assess neurorespiratory control and monitor chronic disease. The latter includes the assessment of severity and disease control, the impact of treatment and environmental triggers, the temporal characterization of disease phenotypes, and the individual risk of exacerbation. While in many cases specific mechanistic insight into the fluctuations still awaits further research, appropriate analyses of the fluctuations already impact on clinical science and practice.


Pulmonary Pharmacology & Therapeutics | 2013

Airway contractility and remodeling : Links to asthma symptoms

Adrian R. West; Harley T. Syyong; Sana Siddiqui; Chris D. Pascoe; Thomas M. Murphy; Harm Maarsingh; Linhong Deng; Geoffrey N. Maksym; Ynuk Bossé

Respiratory symptoms are largely caused by obstruction of the airways. In asthma, airway narrowing mediated by airway smooth muscle (ASM) contraction contributes significantly to obstruction. The spasmogens produced following exposure to environmental triggers, such as viruses or allergens, are initially responsible for ASM activation. However, the extent of narrowing of the airway lumen due to ASM shortening can be influenced by many factors and it remains a real challenge to decipher the exact role of ASM in causing asthmatic symptoms. Innovative tools, such as the forced oscillation technique, continue to develop and have been proven useful to assess some features of ASM function in vivo. Despite these technologic advances, it is still not clear whether excessive narrowing in asthma is driven by ASM abnormalities, by other alterations in non-muscle factors or simply because of the overexpression of spasmogens. This is because a multitude of forces are acting on the airway wall, and because not only are these forces constantly changing but they are also intricately interconnected. To counteract these limitations, investigators have utilized in vitro and ex vivo systems to assess and compare asthmatic and non-asthmatic ASM contractility. This review describes: 1- some muscle and non-muscle factors that are altered in asthma that may lead to airway narrowing and asthma symptoms; 2- some technologies such as the forced oscillation technique that have the potential to unveil the role of ASM in airway narrowing in vivo; and 3- some data from ex vivo and in vitro methods that probe the possibility that airway hyperresponsiveness is due to the altered environment surrounding the ASM or, alternatively, to a hypercontractile ASM phenotype that can be either innate or acquired.


Journal of Applied Physiology | 2012

Modeling stochastic and spatial heterogeneity in a human airway tree to determine variation in respiratory system resistance

Del Leary; Swati A. Bhatawadekar; Grace Parraga; Geoffrey N. Maksym

Asthma is a variable disease with changes in symptoms and airway function over many time scales. Airway resistance (Raw) is variable and thought to reflect changes in airway smooth muscle activity, but just how variation throughout the airway tree and the influence of gas distribution abnormalities affect Raw is unclear. We used a multibranch airway lung model to evaluate variation in airway diameter size, the role of coherent regional variation, and the role of gas distribution abnormalities on mean Raw (Raw) and variation in Raw as described by the SD (SDRaw). We modified an anatomically correct airway tree, provided by Merryn Tawhai (The University of Auckland, New Zealand), consisting of nearly 4,000 airways, to produce temporal and spatial heterogeneity. As expected, we found that increasing the diameter variation by twofold, with no change in the mean diameter, increased SDRaw more than fourfold. Perhaps surprisingly, Raw was proportional to SDRaw under several conditions-when either mean diameter was fixed, and its SD varied or when mean diameter varied, and SD was fixed. Increasing the size of a regional absence in gas distribution (ventilation defect) also led to a proportionate increase in both Raw and SDRaw. However, introducing regional dependence of connected airways strongly increased SDRaw by as much as sixfold, with little change in Raw. The model was able to predict previously reported Raw distributions and correlation of SDRaw on Raw in healthy and asthmatic subjects. The ratio of SDRaw to Raw depended most strongly on interairway coherent variation and only had a slight dependence on ventilation defect size. These findings may explain the linear correlation between variation and mean values of Raw but also suggest that regional alterations in gas distribution and local coordination in ventilation amplify any underlying variation in airway diameters throughout the airway tree.


Journal of Applied Physiology | 2014

Effects of airway tree asymmetry on the emergence and spatial persistence of ventilation defects

Del Leary; Tilo Winkler; Anja Braune; Geoffrey N. Maksym

Asymmetry and heterogeneity in the branching of the human bronchial tree are well documented, but their effects on bronchoconstriction and ventilation distribution in asthma are unclear. In a series of seminal studies, Venegas et al. have shown that bronchoconstriction may lead to self-organized patterns of patchy ventilation in a computational model that could explain areas of poor ventilation [ventilation defects (VDefs)] observed in positron emission tomography images during induced bronchoconstriction. To investigate effects of anatomic asymmetry on the emergence of VDefs we used the symmetric tree computational model that Venegas and Winkler developed using different trees, including an anatomic human airway tree provided by M. Tawhai (University of Auckland), a symmetric tree, and three trees with intermediate asymmetry (Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, Fischman AJ, Callahan RJ, Bellani G, Harris RS. Nature 434: 777-782, 2005 and Winkler T, Venegas JG. J Appl Physiol 103: 655-663, 2007). Ventilation patterns, lung resistance (RL), lung elastance (EL), and the entropy of the ventilation distribution were compared at different levels of airway smooth muscle activation. We found VDefs emerging in both symmetric and asymmetric trees, but VDef locations were largely persistent in asymmetric trees, and bronchoconstriction reached steady state sooner than in a symmetric tree. Interestingly, bronchoconstriction in the asymmetric tree resulted in lower RL (∼%50) and greater EL (∼%25). We found that VDefs were universally caused by airway instability, but asymmetry in airway branching led to local triggers for the self-organized patchiness in ventilation and resulted in persistent locations of VDefs. These findings help to explain the emergence and the persistence in location of VDefs found in imaging studies.


Pulmonary Pharmacology & Therapeutics | 2009

Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

Linhong Deng; Ynuk Bossé; Nathan J. Brown; Leslie Y. M. Chin; Sarah C. Connolly; Nigel J. Fairbank; Greg King; Geoffrey N. Maksym; Peter D. Paré; Chun Y. Seow; Newman L. Stephen

Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSKs dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.


Canadian Journal of Physiology and Pharmacology | 2015

Modelling resistance and reactance with heterogeneous airway narrowing in mild to severe asthma.

Swati A. Bhatawadekar; Del Leary; Geoffrey N. Maksym

Ventilation heterogeneity is an important marker of small airway dysfunction in asthma. The frequency dependence of respiratory system resistance (Rrs) from oscillometry is used as a measure of this heterogeneity. However, this has not been quantitatively assessed or compared with other outcomes from oscillometry, including respiratory system reactance (Xrs) and the associated elastance (Ers). Here, we used a multibranch model of the human lung, including an upper airway shunt, to match previously reported respiratory mechanics in mild to severe asthma. We imposed heterogeneity by narrowing a proportion of the peripheral airways to account for patient Ers at 5 Hz, and then narrowed central airways to account for the remaining Rrs at 18 Hz. The model required >75% of the small airways to be occluded to reproduce severe asthma. While the model produced frequency dependence in Rrs, it was upward-shifted below 5 Hz compared with in-vivo results, indicating that other factors, including more distributed airway narrowing or central airway wall compliance, are required. However, Ers quantitatively reflected the imposed heterogeneity better than the frequency dependence of Rrs, independent of the frequency range for the estimation, and thus was a more robust measure of small-airway function. Thus, Ers appears to have greater potential as a clinical measure of early small-airway disease in asthma.


Physiological Reports | 2016

Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics

Del Leary; Sarah Svenningsen; Fumin Guo; Swati A. Bhatawadekar; Grace Parraga; Geoffrey N. Maksym

In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well‐understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquired MRI ventilation defect maps, forced expiratory volume in one‐second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs). MRI ventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to the MRI ventilation defects. The relationships for VDP with Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14 (r = 0.91, P < 0.0001) and Rrs>9 (r = 0.88, P < 0.0001) were significantly stronger (P = 0.005; P = 0.03, respectively) than with FEV1 (r = −0.68, P = 0.0001). The slopes for the relationship of VDP with simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for the VDP‐Xrs0.2 relationship was largest, suggesting that VDP was dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild‐moderate asthmatics.

Collaboration


Dive into the Geoffrey N. Maksym's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swati A. Bhatawadekar

Toronto Rehabilitation Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Fabry

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grace Parraga

Robarts Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge