Geoffrey N. Pendleton
University of Alabama in Huntsville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey N. Pendleton.
The Astrophysical Journal | 1993
J. L. Matteson; L. A. Ford; Bradley E. Schaefer; David M. Palmer; B. J. Teegarden; T. L. Cline; M. S. Briggs; W. S. Paciesas; Geoffrey N. Pendleton; G. Fishman; C. Kouveliotou; Charles A. Meegan; Richard Wilson; P. Lestrade
We studied the time-averaged gamma-ray burst spectra accumulated by the spectroscopy detectors of the Burst and Transient Source Experiment. The spectra are described well at low energy by a power-law continuum with an exponential cutoff and by a steeper power law at high energy. However, the spectral parameters vary from burst to burst with no universal values. The break in the spectrum ranges from below 100 keV to more than 1 MeV, but peaks below 200 keV with only a small fraction of the spectra breaking above 400 keV; it is therefore unlikely that a majority of the burst spectra are shaped directly by pair processes, unless bursts originate from a broad redshift range. The correlations among burst parameters do not fulfill the predictions of the cosmological models of burst origin. No correlations with burst morphology or the spatial distribution were found. We demonstrate the importance of using a complete spectral description even if a partial description (e.g., a model without a high-energy tail) is statistically satisfactory.
The Astrophysical Journal | 1993
C. Kouveliotou; Charles A. Meegan; G. J. Fishman; Narayana P. Bhat; M. S. Briggs; Thomas M. Koshut; W. S. Paciesas; Geoffrey N. Pendleton
We have studied the duration distribution of the gamma-ray bursts of the first BATSE catalog. We find a bimodality in the distribution, which separates GRBs into two classes: short events (less than 2 s) and longer ones (more than 2 s). Both sets are distributed isotropically and inhomogeneously in the sky. We find that their durations are anticorrelated with their spectral hardness ratios: short GRBs are predominantly harder, and longer ones tend to be softer. Our results provide a first GRB classification scheme based on a combination of the GRB temporal and spectral properties.
Science | 1994
G. J. Fishman; P. N. Bhat; Robert S. Mallozzi; John M. Horack; T. M. Koshut; C. Kouveliotou; Geoffrey N. Pendleton; Charles A. Meegan; R. B. Wilson; W. S. Paciesas; S. J. Goodman; H. J. Christian
Detectors aboard the Compton Gamma Ray Observatory have observed an unexplained terrestrial phenomenon: brief, intense flashes of gamma rays. These flashes must originate in the atmosphere at altitudes above at least 30 kilometers in order to escape atmospheric absorption and reach the orbiting detectors. At least a dozen such events have been detected over the past 2 years. The photon spectra from the events are very hard (peaking in the high-energy portion of the spectrum) and are consistent with bremsstrahlung emission from energetic (million—electron volt) electrons. The most likely origin of these high-energy electrons, although speculative at this time, is a rare type of high-altitude electrical discharge above thunderstorm regions.
Astrophysical Journal Supplement Series | 1999
W. S. Paciesas; Charles A. Meegan; Geoffrey N. Pendleton; M. S. Briggs; C. Kouveliotou; Thomas M. Koshut; John Patrick Lestrade; Michael L. McCollough; Jerome J. Brainerd; Jon Hakkila; William Henze; Robert D. Preece; V. Connaughton; R. Marc Kippen; Robert S. Mallozzi; G. J. Fishman; Georgia Ann Richardson; Maitrayee Sahi
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in 1997 September (4B) to include improved locations for a subset of bursts that have been reprocessed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.
The Astrophysical Journal | 1998
Robert D. Preece; M. S. Briggs; Robert S. Mallozzi; Geoffrey N. Pendleton; W. S. Paciesas; David L. Band
The synchrotron shock model (SSM) for gamma-ray burst emission makes a testable prediction: that the observed low-energy power-law photon number spectral index cannot exceed -2/3 (where the photon model is defined with a positive index:
The Astrophysical Journal | 1995
L. A. Ford; David L. Band; J. L. Matteson; M. S. Briggs; Geoffrey N. Pendleton; Robert D. Preece; W. S. Paciesas; B. J. Teegarden; David M. Palmer; Bradley E. Schaefer
dN/dE \propto E{alpha}
Astrophysical Journal Supplement Series | 1996
Charles A. Meegan; Geoffrey N. Pendleton; M. S. Briggs; C. Kouveliotou; Thomas M. Koshut; John Patrick Lestrade; W. S. Paciesas; Michael L. McCollough; Jerome J. Brainerd; John M. Horack; Jon Hakkila; William Henze; Robert D. Preece; Robert S. Mallozzi; G. J. Fishman
). We have collected time-resolved spectral fit parameters for over 100 bright bursts observed by the Burst And Transient Source Experiment on board the {\it Compton Gamma Ray Observatory}. Using this database, we find 23 bursts in which the spectral index limit of the SSM is violated, We discuss elements of the analysis methodology that affect the robustness of this result, as well as some of the escape hatches left for the SSM by theory.
Astrophysical Journal Supplement Series | 1994
G. J. Fishman; Charles A. Meegan; Robert B. Wilson; M. N. Brock; John M. Horack; C. Kouveliotou; Sethanne Howard; W. S. Paciesas; M. S. Briggs; Geoffrey N. Pendleton
We investigate spectral evolution in 37 bright, long gamma-ray bursts observed with the Burst and Transient Source Experiment (BATSE) spectroscopy detectors. High-resolution spectra are chracterized by the energy of the peak of nu F(sub nu), and the evolution of this quantity is examined relative to the emission intensity. In most cases it is found that this peak energy either rises with or slightly precedes major intensity increases and softens for the remainder of the pulse. Interpulse emission is generally harder early in the burst. For bursts with multiple intensity pulses, later spikes tend to be softer than earlier ones, indicating that the energy of the peak of nu F(sub nu) is bounded by an envelope which decays with time. Evidence is found that bursts in which the bulk of the flux comes well after the event which triggers the instrument tend to show less peak energy variability and are not as hard as several bursts in which the emission occurs promptly after the trigger. Several recently proposed burst models are examined in light of these results and no qualitative conflicts with the observations presented here are found.
The Astrophysical Journal | 1997
A. Crider; Edison P. Liang; I. A. Smith; Robert D. Preece; M. S. Briggs; Geoffrey N. Pendleton; W. S. Paciesas; David L. Band; J. L. Matteson
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1122 cosmic gamma-ray bursts between 1991 April 19 and 1994 September 19. These events constitute the Third BATSE (3B) burst catalog. This catalog includes the events previously reported in the 2B catalog, which covered the time interval 1991 April 19 to 1993 March 9. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance. The angular distribution is consistent with isotropy. The mean galactic dipole and quadrupole moments are within 0.6 a and 0.3 a, respectively, of the values expected for isotropy. The intensity distribution is not consistent with a homogeneous distribution of burst sources, with V/V(sub max) = 0.33 +/- 0.01. The duration distribution (T(sub 90)) exhibits bimodality, with peaks at approx. 0.5 and approx. 30 s. There is no compelling evidence for burst repetition, but only weak limits can be placed on the repetition rate.
The Astrophysical Journal | 1996
M. S. Briggs; W. S. Paciesas; Geoffrey N. Pendleton; Charles A. Meegan; G. J. Fishman; John M. Horack; M. N. Brock; C. Kouveliotou; Dieter H. Hartmann; Jon Hakkila
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in 1997 September (4B) to include improved locations for a subset of bursts that have been reprocessed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.