Geoffrey P. Dobson
James Cook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey P. Dobson.
Respiration Physiology | 1988
R. G. Boutilier; Geoffrey P. Dobson; Ulrich Hoeger; D. J. Randall
We have studied the mechanisms of acute hypoxia tolerance in rainbow trout (Salmo gairdneri). Fish held at 9 degrees C were exposed to various levels of hypoxia for 24 h. At an environmental PO2 of 30 Torr, the fish showed an initial plasma acidosis probably of metabolic origin which was subsequently offset such that blood pH returned to normal within about 4 h. Over this time period, red cell pH was maintained constant. Comparing the effects of different levels of hypoxia following 24 h exposure, oxygen consumption of the animal remained unchanged over a broad range of inspired oxygen tensions but declined by over 30% of normoxic values at inspired water PO2 levels of 80 Torr. This appeared to be a true metabolic depression because signs of increased anaerobic metabolism did not occur until there was a further reduction in water oxygen levels. Rainbow trout appear to be able to maintain a relatively high energy status in their white muscle during 24 h exposure to severe hypoxia (water PO2 = 30 Torr). As the level of hypoxia was intensified, there was a reduction in the oxygen gradient across the gills, probably facilitated in part by the release of catecholamines into the blood. The erythrocytic ATP: Hb4 molar ratios declined with increasing hypoxic stress as did the pH gradient between the erythrocyte and plasma. The overall effect was no change in Hb O2-affinity after 24 h exposure to severe hypoxia.
European Journal of Applied Physiology | 1999
Michael J. Ashenden; Christopher J. Gore; Geoffrey P. Dobson; Allan G. Hahn
Abstract The purpose of this study was to document the effect of 23 days of “live high, train low” on the haemoglobin mass of endurance athletes. Thirteen male subjects from either cycling, triathlon or cross-country skiing backgrounds participated in the study. Six subjects (HIGH) spent 8−10 h per night in a “nitrogen house” at a simulated altitude of 3000 m in normobaric hypoxia, whilst control subjects slept at near sea level (CONTROL, n = 7). Athletes logged their daily training sessions, which were conducted at 600 m. Total haemoglobin mass (as measured using the CO-rebreathing technique) did not change when measured before (D1 or D2) and after (D28) 23 nights of hypoxic exposure [HIGH 990 (127) vs 972 (97) g and CONTROL 1042 (133) vs 1033 (138) g, before and after simulated altitude exposure, respectively]. Nor was there any difference in the substantial array of reticulocyte parameters measured using automated flow cytometry prior to commencing the study (D1), after 6 (D10) and 15 (D19) nights of simulated altitude, or 1 day after leaving the nitrogen house (D28) when HIGH and CONTROL groups were compared. We conclude that red blood cell production is not stimulated in male endurance athletes who spend 23 nights at a simulated altitude of 3000 m.
European Journal of Applied Physiology | 2000
Michael J. Ashenden; Christopher J. Gore; Geoffrey P. Dobson; Tanya Boston; Robin Parisotto; Kerry R. Emslie; Graham J. Trout; Allan G. Hahn
Abstract The purpose of this study was to investigate whether the modest increases in serum erythropoietin (sEpo) experienced after brief sojourns at simulated altitude are sufficient to stimulate reticulocyte production. Six well-trained middle-distance runners (HIGH, mean maximum oxygen uptake, V˙O2max = 70.2 ml · kg−1 · min−1) spent 8–11 h per night for 5 nights in a nitrogen house that simulated an altitude of 2650 m. Five squad members (CONTROL, mean V˙O2max = 68.9 ml · kg−1 · min−1) undertook the same training, which was conducted under near-sea-level conditions (600 m altitude), and slept in dormitory-style accommodation also at 600 m altitude. For both groups, this 5-night protocol was undertaken on three occasions, with a 3-night interim between successive exposures. Venous blood samples were measured for sEpo after 1 and 5 nights of hypoxia on each occasion. The percentage of reticulocytes was measured, along with a range of reticulocyte parameters that are sensitive to changes in erythropoiesis. Mean serum erythropoietin levels increased significantly (P < 0.01) above baseline values [mean (SD) 7.9 (2.4) mU · ml−1] in the HIGH group after the 1st night [11.8 (1.9) mU · ml−1, 57%], and were also higher on the 5th night [10.7 (2.2) mU · ml−1, 42%] compared with the CONTROL group, whose erythropoietin levels did not change. After athletes spent 3 nights at near sea level, the change in sEpo during subsequent hypoxic exposures was markedly attenuated (13% and −4% change during the second exposure; 26% and 14% change during the third exposure; 1st and 5th nights of each block, respectively). The increase in sEpo was insufficient to stimulate reticulocyte production at any time point. We conclude that when daily training loads are controlled, the modest increases in sEpo known to occur following brief exposure to a simulated altitude of 2650 m are insufficient to stimulate reticulocyte production.
European Journal of Applied Physiology | 1999
Michael J. Ashenden; Christopher J. Gore; David T. Martin; Geoffrey P. Dobson; Allan G. Hahn
Abstract The aim of this study was to document the effect of “living high, training low” on the red blood cell production of elite female cyclists. Six members of the Australian National Womens road cycling squad slept for 12 nights at a simulated altitude of 2650 m in normobaric hypoxia (HIGH), while 6 team-mates slept at an altitude of 600 m (CONTROL). HIGH and CONTROL subjects trained and raced as a group throughout the 70-day study. Baseline levels of reticulocyte parameters sensitive to changes in erythropoeisis were measured 21 days and 1 day prior to sleeping in hypoxia (D1 and D20, respectively). These measures were repeated after 7 nights (D27) and 12 nights (D34) of simulated altitude exposure, and again 15 days (D48) and 33 days (D67) after leaving the altitude house. There was no increase in reticulocyte production, nor any change in reticulocyte parameters in either the HIGH or CONTROL groups. This lack of haematological response was substantiated by total haemoglobin mass measures (CO-rebreathing), which did not change when measured on D1, D20, D34 or D67. We conclude that in elite female road cyclists, 12 nights of exposure to normobaric hypoxia (2650 m) is not sufficient to either stimulate reticulocyte production or increase haemoglobin mass.
European Journal of Applied Physiology | 1999
S. Hitchins; David T. Martin; Louise M. Burke; K. Yates; Kieran Fallon; Allan G. Hahn; Geoffrey P. Dobson
Abstract Eight competitive cyclists [mean peak oxygen consumption, (V˙O2peak) = 65 ml · min−1 · kg−1] undertook two 60-min cycle ergometer time trials at 32°C and 60% relative humidity. The time trials were split into two 30-min phases: a fixed-workload phase and a variable-workload phase. Each trial was preceded by ingestion of either a glycerol solution [1 g · kg−1 body mass (BM) in a diluted carbohydrate (CHO)-electrolyte drink] or a placebo of equal volume (the diluted CHO-electrolyte drink). The total fluid intake in each trial was 22 ml · kg−1 BM. A repeated-measures, double blind, cross over design with respect to glycerol was employed. Glycerol ingestion expanded body water by ≈600 ml over the placebo treatment. Glycerol treatment significantly increased performance by 5% compared with the placebo group, as assessed by total work in the variable-workload phase (P < 0.04). There were no significant differences in rectal temperature, sweat rate or cardiac frequency between trials. Data indicate that the glycerol-induced performance increase did not result from plasma volume expansion and subsequently lower core temperature or lower cardiac frequencies at a given power output as previously proposed. However, during the glycerol trial, subjects maintained a higher power output without increased perception of effort or thermal strain.
Journal of Trauma-injury Infection and Critical Care | 2015
Geoffrey P. Dobson; Hayley L. Letson; Rajiv Sharma; Forest R. Sheppard; Andrew P. Cap
Abstract Traumatic-induced coagulopathy (TIC) is a hemostatic disorder that is associated with significant bleeding, transfusion requirements, morbidity and mortality. A disorder similar or analogous to TIC was reported around 70 years ago in patients with shock, hemorrhage, burns, cardiac arrest or undergoing major surgery, and the condition was referred to as a “severe bleeding tendency,” “defibrination syndrome,” “consumptive disorder,” and later by surgeons treating US Vietnam combat casualties as a “diffuse oozing coagulopathy.” In 1982, Moore’s group termed it the “bloody vicious cycle,” others “the lethal triad,” and in 2003 Brohi and colleagues introduced “acute traumatic coagulopathy” (ATC). Since that time, early TIC has been cloaked in many names and acronyms, including a “fibrinolytic form of disseminated intravascular coagulopathy (DIC).” A global consensus on naming is urgently required to avoid confusion. In our view, TIC is a dynamic entity that evolves over time and no single hypothesis adequately explains the different manifestations of the coagulopathy. However, early TIC is not DIC because an increased thrombin-generating potential in vitro does not imply a clinically relevant thrombotic state in vivo as early TIC is characterized by excessive bleeding, not thrombosis. DIC with its diffuse anatomopathologic fibrin deposition appears to be a latter phase progression of TIC associated with unchecked inflammation and multiple organ dysfunction.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998
Julie M. Cieslar; Ming-Ta Huang; Geoffrey P. Dobson
Tissue spaces were determined in rat heart, liver, and skeletal muscle in vivo using isotopically labeled [14C]inulin. Tracer was injected into the jugular vein of pentobarbital-anesthetized male Sprague-Dawley rats. After a 30-min equilibration period, a blood sample was taken, and heart, liver, and gastrocnemius muscle were excised and immediately freeze clamped at liquid nitrogen temperatures. The extracellular inulin space was 0.209 +/- 0.006 (n = 13), 0.203 +/- 0.080 (n = 7), and 0.124 +/- 0.006 (SE) ml/g wet wt tissue (n = 8) for heart, liver, and skeletal muscle, respectively. Total tissue water was 0.791 +/- 0.005 (n = 9), 0.732 +/- 0.002 (n = 9), and 0.755 +/- 0.005 ml/g wet wt tissue (n = 10) for heart, liver, and skeletal muscle, respectively. Expressed as a percentage of total tissue water, the intracellular space was 73.6, 72.2, and 83. 7% for heart, liver, and skeletal muscle, respectively. With use of 2,3-diphospho-D-glyceric acid as a vascular marker, the interstitial space was calculated by subtracting the counts in tissue due to whole blood from total tissue counts and dividing by plasma counts. The interstitial space was 18.8, 22.4, and 14.5% of total tissue water, with accompanying plasma spaces of 7.7, 5.3, and 1.8% for heart, liver, and gastrocnemius muscle, respectively. The tracer method used in this study provides a quantitative assessment of water distribution in tissues of nonnephrectomized rats that has applications for calculation of tissue ion and metabolite concentrations, gradients, and fluxes under normal and pathophysiological conditions.Tissue spaces were determined in rat heart, liver, and skeletal muscle in vivo using isotopically labeled [14C]inulin. Tracer was injected into the jugular vein of pentobarbital-anesthetized male Sprague-Dawley rats. After a 30-min equilibration period, a blood sample was taken, and heart, liver, and gastrocnemius muscle were excised and immediately freeze clamped at liquid nitrogen temperatures. The extracellular inulin space was 0.209 ± 0.006 ( n = 13), 0.203 ± 0.080 ( n = 7), and 0.124 ± 0.006 (SE) ml/g wet wt tissue ( n = 8) for heart, liver, and skeletal muscle, respectively. Total tissue water was 0.791 ± 0.005 ( n = 9), 0.732 ± 0.002 ( n = 9), and 0.755 ± 0.005 ml/g wet wt tissue ( n = 10) for heart, liver, and skeletal muscle, respectively. Expressed as a percentage of total tissue water, the intracellular space was 73.6, 72.2, and 83.7% for heart, liver, and skeletal muscle, respectively. With use of 2,3-diphospho-d-glyceric acid as a vascular marker, the interstitial space was calculated by subtracting the counts in tissue due to whole blood from total tissue counts and dividing by plasma counts. The interstitial space was 18.8, 22.4, and 14.5% of total tissue water, with accompanying plasma spaces of 7.7, 5.3, and 1.8% for heart, liver, and gastrocnemius muscle, respectively. The tracer method used in this study provides a quantitative assessment of water distribution in tissues of nonnephrectomized rats that has applications for calculation of tissue ion and metabolite concentrations, gradients, and fluxes under normal and pathophysiological conditions.
Critical Care Medicine | 2012
Hayley L. Letson; N. M. Pecheniuk; Lebo P. Mhango; Geoffrey P. Dobson
Objective: Acute traumatic coagulopathy occurs early in hemorrhagic trauma and is a major contributor to mortality and morbidity. Our aim was to examine the effect of small-volume 7.5% NaCl adenocaine (adenosine and lidocaine, adenocaine) and Mg2+ on hypotensive resuscitation and coagulopathy in the rat model of severe hemorrhagic shock. Design: Prospective randomized laboratory investigation. Subjects: A total of 68 male Sprague Dawley Rats. Intervention: Post-hemorrhagic shock treatment for acute traumatic coagulopathy. Measurements and Methods: Nonheparinized male Sprague-Dawley rats (300–450 g, n = 68) were randomly assigned to either: 1) untreated; 2) 7.5% NaCl; 3) 7.5% NaCl adenocaine; 4) 7.5% NaCl Mg2+; or 5) 7.5% NaCl adenocaine/Mg2+. Hemorrhagic shock was induced by phlebotomy to mean arterial pressure of 35–40 mm Hg for 20 mins (~40% blood loss), and animals were left in shock for 60 mins. Bolus (0.3 mL) was injected into the femoral vein and hemodynamics monitored. Blood was collected in Na citrate (3.2%) tubes, centrifuged, and the plasma snap frozen in liquid N2 and stored at −80°C. Coagulation was assessed using activated partial thromboplastin times and prothrombin times. Results: Small-volume 7.5% NaCl adenocaine and 7.5% NaCl adenocaine/Mg2+ were the only two groups that gradually increased mean arterial pressure 1.6-fold from 38–39 mm Hg to 52 and 64 mm Hg, respectively, at 60 mins (p < .05). Baseline plasma activated partial thromboplastin time was 17 ± 0.5 secs and increased to 63 ± 21 secs after bleeding time, and 217 ± 32 secs after 60-min shock. At 60-min resuscitation, activated partial thromboplastin time values for untreated, 7.5% NaCl, 7.5% NaCl/Mg2+, and 7.5% NaCl adenocaine rats were 269 ± 31 secs, 262 ± 38 secs, 150 ± 43 secs, and 244 ± 38 secs, respectively. In contrast, activated partial thromboplastin time for 7.5% NaCl adenocaine/Mg2+ was 24 ± 2 secs (p < .05). Baseline prothrombin time was 28 ± 0.8 secs (n = 8) and followed a similar pattern of correction. Conclusions: Plasma activated partial thromboplastin time and prothrombin time increased over 10-fold during the bleed and shock periods prior to resuscitation, and a small-volume (~1 mL/kg) IV bolus of 7.5% NaCl AL/Mg2+ was the only treatment group that raised mean arterial pressure into the permissive range and returned activated partial thromboplastin time and prothrombin time clotting times to baseline at 60 mins.
Shock | 2011
Hayley L. Letson; Geoffrey P. Dobson
ABSTRACT Hemorrhage is responsible for up to 40% of trauma mortality, and of these deaths, 33% to 56% occur during the prehospital period. In an effort to translate the cardioprotective effects of Adenocaine (adenosine, lidocaine) and Mg2+ (ALM) from cardiac surgery to resuscitation science, we examined the early resuscitative effects of 7.5% NaCl with ALM in the rat model of 60% blood loss. Male Sprague-Dawley rats (250–350 g, n = 40) were anesthetized and randomly assigned to one of five groups: (a) untreated, (b) 7.5% NaCl, (c) 7.5% NaCl/6% dextran 70, (d) 7.5% NaCl/Mg2+, and (e) 7.5% NaCl/ALM. Blood withdrawal occurred over ∼50 min (MAP 30–35 mmHg), and rats were left in shock for 30 min. Total shock time was ∼80 min; 0.3-mL bolus was injected intravenously over 10 s, and hemodynamics monitored for 60 min (phase 1). Shed blood was reinfused and function monitored for a further 60 min (phase 2). Lead II electrocardiogram, arterial pressures, mean arterial pressure (MAP), pulse pressure (PP), heart rate (HR), and rate-pressure product were monitored. Mortality was as follows: untreated (100%), 7.5% NaCl (75%), 7.5% NaCl/6% dextran 70 (87.5%), 7.5% NaCl/Mg2+ (62.5%), and 7.5% NaCl/ALM (0%). Deaths occurred at different times depending on treatment group and paralleled differences in the total number of ventricular arrhythmias with the highest number in untreated animals (49 ± 17) and lowest in 7.5% NaCl/ALM rats (2 ± 1.8) (P < 0.05). At the end of phase 1, MAP of 7.5% NaCl/ALM–treated animals increased from 29 to 40 mmHg (P < 0.05). At the end of phase 2, MAP, PP, HR, and rate-pressure product in the ALM group were 75%, 193%, 96%, and 83% of their preshock values. Small-volume (∼1 mL/kg) i.v. bolus of 7.5% NaCl/ALM led to 100% survival following 60% blood loss with higher MAP than any group, an 89% to 96% reduction in the total number of arrhythmias, and a stable HR.
Clinical and Experimental Pharmacology and Physiology | 2003
Geoffrey P. Dobson
1. From the smallest shrew or bumble‐bee bat to the largest blue whale, heart size varies by over seven orders of magnitude (from 12 mg to 600 kg). This study reviews the scaling relationships between heart design, cellular bioenergetics and mitochondrial efficiencies in mammals of different body sizes.