Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffroy Lumay is active.

Publication


Featured researches published by Geoffroy Lumay.


Physical Review Letters | 2008

Swarming and Swirling in Self-Propelled Polar Granular Rods

Arshad Kudrolli; Geoffroy Lumay; Dmitri Volfson; Lev S. Tsimring

Using experiments with anisotropic vibrated rods and quasi-2D numerical simulations, we show that shape plays an important role in the collective dynamics of self-propelled (SP) particles. We demonstrate that SP rods exhibit local ordering, aggregation at the side walls, and clustering absent in round SP particles. Furthermore, we find that at sufficiently strong excitation SP rods engage in a persistent swirling motion in which the velocity is strongly correlated with particle orientation.


Physical Review Letters | 2012

Breaking Arches with Vibrations: The Role of Defects

Celia Lozano; Geoffroy Lumay; Iker Zuriguel; R. C. Hidalgo; A. Garcimartín

We present experimental and numerical results regarding the stability of arches against external vibrations. Two-dimensional strings of mutually stabilizing grains are geometrically analyzed and subsequently submitted to a periodic forcing at fixed frequency and increasing amplitude. The main factor that determines the granular arch resistance against vibrations is the maximum angle among those formed between any particle of the arch and its two neighbors: the higher the maximum angle is, the easier it is to break the arch. On the basis of an analysis of the forces, a simple explanation is given for this dependence. From this, interesting information can be extracted about the expected magnitudes of normal forces and friction coefficients of the particles composing the arches.


Physical Review E | 2004

Compaction of anisotropic granular materials: experiments and simulations.

Geoffroy Lumay; Nicolas Vandewalle

We present both experimental and numerical investigations of compaction in granular materials composed of rods. As a function of the particles size and with respect to the container diameter, we have observed large variations of the asymptotic packing volume fraction. The relevant parameter is the ratio between the rod length l and the tube diameter D . Even the compaction dynamics remains unchanged for various particle lengths, and a transition between 3d and 2d ordering for grain orientations is observed for l/D=1 . A toy model for the compaction of needles on a lattice is also proposed. This toy model gives a complementary view of our experimental results and leads to behaviors similar to experimental ones.


Physical Review E | 2006

Experimental study of the compaction dynamics for two-dimensional anisotropic granular materials

Geoffroy Lumay; Nicolas Vandewalle

We present an experimental study of the compaction dynamics for two-dimensional anisotropic granular systems. The compaction dynamics of rods is measured at three different scales: (i) the macroscopic scale through the packing fraction rho, (ii) the mesoscopic scale through both fractions of aligned grains phi(a) and ideally ordered grains phi(io), and (iii) the microscopic scale through both rotational and translational grain mobilities mu(r,t). At the macroscopic scale, we have observed two stages during the compaction process, suggesting different characteristic time scales for grain relaxation. At the mesoscopic scale, we have observed the formation and the growth of domains made of aligned grains during the first stage of compaction. At the late stage, these domains of aligned grains are sheared to form ideally ordered domains. From a microscopic point of view, measurements reveal that the beginning of the compaction process is essentially related to translational motions of the grains. The grain rotations drive mainly the process during the late stages of compaction.


European Physical Journal E | 2013

Mesoscale structures from magnetocapillary self-assembly

Nicolas Vandewalle; Noriko Obara; Geoffroy Lumay

When identical soft ferromagnetic particles are suspended at some water-air interface, capillary attraction is balanced by magnetic repulsion induced by a vertical magnetic field. By adjusting the magnetic field strength, the equilibrium interdistance between particles can be tuned. The aim of this paper is to study the ordering of particles for large assemblies. We have found an upper size limit above which the assembly collapses due to capillary effects. Before reaching this critical number of particles, defects are always present and limit the perfect ordering expected for that system. This is due to the curvature of the interface induced by the weight of the self-assembly.Graphical abstract


European Physical Journal E | 2016

Ribbons of superparamagnetic colloids in magnetic field.

Alexis Darras; Jorge Fiscina; Maryam Pakpour; Nicolas Vandewalle; Geoffroy Lumay

Abstract.While the aggregation process of superparamagnetic colloids in strong magnetic field is well known on short time since a few decades, recent theoretical works predicted an equilibrium state reached after a long time. In the present paper, we present experimental observations of this equilibrium state with a two-dimensional system and we compare our data with the predictions of a pre-existing model. Above a critical aggregation size, a deviation between the model and the experimental data is observed. This deviation is explained by the formation of ribbon-shaped aggregates. The ribbons are formed due to lateral aggregation of chains. An estimation of the magnetic energy for chains and ribbons shows that ribbons are stable structures when the number of magnetic grains is higher than N = 30 .Graphical abstract


Physical Review E | 2009

Compaction dynamics of a magnetized powder

Geoffroy Lumay; Stéphane Dorbolo; Nicolas Vandewalle

We have investigated experimentally the influence of a magnetic interaction between the grains on the compaction dynamics of a granular pile submitted to a series of taps. The granular material used to perform this study is a mixture of metallic and glass grains. The packing is immersed in homogeneous external magnetic field. The magnetic field induces an interaction between the metallic grains that constitutes the tunable cohesion. The compaction characteristic time and the asymptotic packing fraction have been measured as a function of the Bond number which is the ratio between the cohesive magnetic force and the grain weight. These measurements have been performed for different fractions of metallic beads in the pile. When the pile is only made of metallic grains, the characteristic compaction time increases as the square root of the Bond number. While the asymptotic packing fraction decreases as the inverse of the Bond number. For mixtures, when the fraction of magnetized grains in the pile is increased, the characteristic time increases while the asymptotic packing fraction decreases. A simple mesoscopic model based on the formation of granular chains along the magnetic field direction is proposed to explain the observed macroscopic properties of the packings.


Physical Review E | 2010

Effect of an electric field on an intermittent granular flow.

Eric Mersch; Geoffroy Lumay; Frédéric Boschini; Nicolas Vandewalle

Granular gravity driven flows of glass beads have been observed in a silo with a flat bottom. A dc high electric field has been applied perpendicularly to the silo to tune the cohesion. The outlet mass flow has been measured. An image subtraction technique has been applied to visualize the flow geometry and a spatiotemporal analysis of the flow dynamics has been performed. The outlet mass flow is independent of voltage, but a transition from funnel flow to rathole flow is observed. This transition is of probabilistic nature and an intermediate situation exists between the funnel and the rathole situations. At a given voltage, two kinds of flow dynamics can occur: a continuous flow or an intermittent flow. The electric field increases the probability to observe an intermittent flow.


New Journal of Physics | 2014

Customizing mesoscale self-assembly with three-dimensional printing

Martin Poty; Geoffroy Lumay; Nicolas Vandewalle

Self-assembly due to capillary forces is a common method for generating two-dimensional mesoscale structures from identical floating particles at the liquid–air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost three-dimensional printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new paths toward low cost microfabrication.Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.


International Journal of Pharmaceutics | 2015

Linking flowability and granulometry of lactose powders

Frédéric Boschini; Vincent Delaval; Karl Traina; Nicolas Vandewalle; Geoffroy Lumay

The flowing properties of 10 lactose powders commonly used in pharmaceutical industries have been analyzed with three recently improved measurement methods. The first method is based on the heap shape measurement. This straightforward measurement method provides two physical parameters (angle of repose αr and static cohesive index σr) allowing to make a first screening of the powder properties. The second method allows to estimate the rheological properties of a powder by analyzing the powder flow in a rotating drum. This more advanced method gives a large set of physical parameters (flowing angle αf, dynamic cohesive index σf, angle of first avalanche αa and powder aeration %ae) leading to deeper interpretations. The third method is an improvement of the classical bulk and tapped density measurements. In addition to the improvement of the measurement precision, the densification dynamics of the powder bulk submitted to taps is analyzed. The link between the macroscopic physical parameters obtained with these methods and the powder granulometry is analyzed. Moreover, the correlations between the different flowability indexes are discussed. Finally, the link between grain shape and flowability is discussed qualitatively.

Collaboration


Dive into the Geoffroy Lumay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge