Georg B. Ehret
Geneva College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georg B. Ehret.
Nature Genetics | 2009
Daniel Levy; Georg B. Ehret; Kenneth Rice; Germaine C. Verwoert; Lenore J. Launer; Abbas Dehghan; Nicole L. Glazer; Alanna C. Morrison; Andrew D. Johnson; Thor Aspelund; Yurii S. Aulchenko; Thomas Lumley; Anna Köttgen; Fernando Rivadeneira; Gudny Eiriksdottir; Xiuqing Guo; Dan E. Arking; Gary F. Mitchell; Francesco Mattace-Raso; Albert V. Smith; Kent D. Taylor; Robert B. Scharpf; Shih Jen Hwang; Eric J.G. Sijbrands; Joshua C. Bis; Tamara B. Harris; Santhi K. Ganesh; Christopher J. O'Donnell; Albert Hofman; Jerome I. Rotter
Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with interindividual blood pressure variation have been identified and replicated. Here we report results of a genome-wide association study of systolic (SBP) and diastolic (DBP) blood pressure and hypertension in the CHARGE Consortium (n = 29,136), identifying 13 SNPs for SBP, 20 for DBP and 10 for hypertension at P < 4 × 10−7. The top ten loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to the number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-analysis with the Global BPgen Consortium (n = 34,433), four CHARGE loci attained genome-wide significance (P < 5 × 10−8) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). Identifying genes associated with blood pressure advances our understanding of blood pressure regulation and highlights potential drug targets for the prevention or treatment of hypertension.
Nature Genetics | 2009
Anna Köttgen; Nicole L. Glazer; Abbas Dehghan; Shih Jen Hwang; Ronit Katz; Man Li; Qiong Yang; Vilmundur Gudnason; Lenore J. Launer; Tamara B. Harris; Albert V. Smith; Dan E. Arking; Brad C. Astor; Eric Boerwinkle; Georg B. Ehret; Ingo Ruczinski; Robert B. Scharpf; Yii-Der I. Chen; Ian H. de Boer; Talin Haritunians; Thomas Lumley; Mark J. Sarnak; David S. Siscovick; Emelia J. Benjamin; Daniel Levy; Ashish Upadhyay; Yurii S. Aulchenko; Albert Hofman; Fernando Rivadeneira; Andre G. Uitterlinden
Chronic kidney disease (CKD) has a heritable component and is an important global public health problem because of its high prevalence and morbidity. We conducted genome-wide association studies (GWAS) to identify susceptibility loci for glomerular filtration rate, estimated by serum creatinine (eGFRcrea) and cystatin C (eGFRcys), and CKD (eGFRcrea < 60 ml/min/1.73 m2) in European-ancestry participants of four population-based cohorts (ARIC, CHS, FHS, RS; n = 19,877; 2,388 CKD cases), and tested for replication in 21,466 participants (1,932 CKD cases). We identified significant SNP associations (P < 5 × 10−8) with CKD at the UMOD locus, with eGFRcrea at UMOD, SHROOM3 and GATM-SPATA5L1, and with eGFRcys at CST and STC1. UMOD encodes the most common protein in human urine, Tamm-Horsfall protein, and rare mutations in UMOD cause mendelian forms of kidney disease. Our findings provide new insights into CKD pathogenesis and underscore the importance of common genetic variants influencing renal function and disease.
Nature Genetics | 2009
Arne Pfeufer; Serena Sanna; Dan E. Arking; Martina Müller; Vesela Gateva; Christian Fuchsberger; Georg B. Ehret; Marco Orru; Cristian Pattaro; Anna Köttgen; Siegfried Perz; Gianluca Usala; Maja Barbalic; Man Li; Benno Pütz; Angelo Scuteri; Ronald J. Prineas; Moritz F. Sinner; Christian Gieger; Samer S. Najjar; W.H. Linda Kao; Thomas W. Mühleisen; Mariano Dei; Christine Happle; Stefan Möhlenkamp; Laura Crisponi; Raimund Erbel; Karl-Heinz Jöckel; Silvia Naitza; Gerhard Steinbeck
The QT interval, a measure of cardiac repolarization, predisposes to ventricular arrhythmias and sudden cardiac death (SCD) when prolonged or shortened. A common variant in NOS1AP is known to influence repolarization. We analyze genome-wide data from five population-based cohorts (ARIC, KORA, SardiNIA, GenNOVA and HNR) with a total of 15,842 individuals of European ancestry, to confirm the NOS1AP association and identify nine additional loci at P < 5 × 10−8. Four loci map near the monogenic long-QT syndrome genes KCNQ1, KCNH2, SCN5A and KCNJ2. Two other loci include ATP1B1 and PLN, genes with established electrophysiological function, whereas three map to RNF207, near LITAF and within NDRG4-GINS3-SETD6-CNOT1, respectively, all of which have not previously been implicated in cardiac electrophysiology. These results, together with an accompanying paper from the QTGEN consortium, identify new candidate genes for ventricular arrhythmias and SCD.
Nature Genetics | 2010
Arne Pfeufer; Charlotte van Noord; Kristin D. Marciante; Dan E. Arking; Martin G. Larson; Albert V. Smith; Kirill V. Tarasov; Martina Müller; Nona Sotoodehnia; Moritz F. Sinner; Germaine C. Verwoert; Man Li; W.H. Linda Kao; Anna Köttgen; Josef Coresh; Joshua C. Bis; Bruce M. Psaty; Kenneth Rice; Jerome I. Rotter; Fernando Rivadeneira; Albert Hofman; Jan A. Kors; Bruno H. Stricker; André G. Uitterlinden; Cornelia M. van Duijn; Britt M. Beckmann; Wiebke Sauter; Christian Gieger; Steven A. Lubitz; Christopher Newton-Cheh
The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 × 10−8. At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.
Nature Genetics | 2009
Emelia J. Benjamin; Kenneth Rice; Dan E. Arking; Arne Pfeufer; Charlotte van Noord; Albert V. Smith; Renate B. Schnabel; Joshua C. Bis; Eric Boerwinkle; Moritz F. Sinner; Abbas Dehghan; Steven A. Lubitz; Ralph B. D'Agostino; Thomas Lumley; Georg B. Ehret; Jan Heeringa; Thor Aspelund; Christopher Newton-Cheh; Martin G. Larson; Kristin D. Marciante; Elsayed Z. Soliman; Fernando Rivadeneira; Thomas J. Wang; Gudny Eiriksdottir; Daniel Levy; Bruce M. Psaty; Man Li; Alanna M. Chamberlain; Albert Hofman; Tamara B. Harris
We conducted meta-analyses of genome-wide association studies for atrial fibrillation (AF) in participants from five community-based cohorts. Meta-analyses of 896 prevalent (15,768 referents) and 2,517 incident (21,337 referents) AF cases identified a new locus for AF (ZFHX3, rs2106261, risk ratio RR = 1.19; P = 2.3 × 10−7). We replicated this association in an independent cohort from the German AF Network (odds ratio = 1.44; P = 1.6 × 10−11; combined RR = 1.25; combined P = 1.8 × 10−15).
Nature Genetics | 2009
Santhi K. Ganesh; Neil A. Zakai; Frank J. A. van Rooij; Nicole Soranzo; Albert V. Smith; Michael A. Nalls; Ming-Huei Chen; Anna Köttgen; Nicole L. Glazer; Abbas Dehghan; Brigitte Kühnel; Thor Aspelund; Qiong Yang; Toshiko Tanaka; Andrew E. Jaffe; Joshua C. Bis; Germaine C. Verwoert; Alexander Teumer; Caroline S. Fox; Jack M. Guralnik; Georg B. Ehret; Kenneth Rice; Janine F. Felix; Augusto Rendon; Gudny Eiriksdottir; Daniel Levy; Kushang V. Patel; Eric Boerwinkle; Jerome I. Rotter; Albert Hofman
Measurements of erythrocytes within the blood are important clinical traits and can indicate various hematological disorders. We report here genome-wide association studies (GWAS) for six erythrocyte traits, including hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and red blood cell count (RBC). We performed an initial GWAS in cohorts of the CHARGE Consortium totaling 24,167 individuals of European ancestry and replication in additional independent cohorts of the HaemGen Consortium totaling 9,456 individuals. We identified 23 loci significantly associated with these traits in a meta-analysis of the discovery and replication cohorts (combined P values ranging from 5 × 10−8 to 7 × 10−86). Our findings include loci previously associated with these traits (HBS1L-MYB, HFE, TMPRSS6, TFR2, SPTA1) as well as new associations (EPO, TFRC, SH2B3 and 15 other loci). This study has identified new determinants of erythrocyte traits, offering insight into common variants underlying variation in erythrocyte measures.
Nature Genetics | 2012
Hélène Louis-Dit-Picard; Julien Barc; Daniel Trujillano; Stéphanie Miserey-Lenkei; Nabila Bouatia-Naji; Olena Pylypenko; Geneviève Beaurain; Amélie Bonnefond; Olivier Sand; Christophe Simian; Emmanuelle Vidal-Petiot; Christelle Soukaseum; Chantal Mandet; Françoise Broux; Olivier Chabre; Michel Delahousse; V. Esnault; Béatrice Fiquet; Pascal Houillier; Corinne Isnard Bagnis; Jens Koenig; Martin Konrad; Paul Landais; Chebel Mourani; Patrick Niaudet; Vincent Probst; Christel Thauvin; Robert J. Unwin; Steven D. Soroka; Georg B. Ehret
Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na+-Cl− cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure.
Current Hypertension Reports | 2010
Georg B. Ehret
Contemporary genomic tools now allow the fast and reliable genotyping of hundreds of thousands of variants and permit an unbiased interrogation of the common variability across the human genome. These technical advances have been the basis of numerous recent investigations of genes underlying complex genetic traits, and the results for blood pressure and hypertension have been of particular interest. The pathophysiology of the complex genetic trait blood pressure and hypertension is unclear. The heritability of essential hypertension is high and insights can be gained by finding associated genes. Current genome-wide association studies (GWAS) have identified 10 to 20 loci in or near genes that generally were not expected to be associated with blood pressure or essential hypertension; more significant variants will be discovered when even larger and more refined studies become available. This article gives a short introduction to GWAS and summarizes the current findings for blood pressure and hypertension.
Human Molecular Genetics | 2011
Ervin R. Fox; J. Hunter Young; Yali Li; Albert W. Dreisbach; Brendan J. Keating; Solomon K. Musani; Kiang Liu; Alanna C. Morrison; Santhi K. Ganesh; Abdullah Kutlar; Josef F. Polak; Richard R. Fabsitz; Daniel L. Dries; Deborah N. Farlow; Susan Redline; Adebowale Adeyemo; Joel N. Hirschorn; Yan V. Sun; Sharon B. Wyatt; Alan D. Penman; Walter Palmas; Jerome I. Rotter; Raymond R. Townsend; Ayo Doumatey; Bamidele O. Tayo; Thomas H. Mosley; Helen N. Lyon; Sun J. Kang; Charles N. Rotimi; Richard S. Cooper
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
PLOS Genetics | 2010
Tamra E. Meyer; Germaine C. Verwoert; Shih-Jen Hwang; Nicole L. Glazer; Albert V. Smith; Frank J. A. van Rooij; Georg B. Ehret; Eric Boerwinkle; Janine F. Felix; Tennille S. Leak; Tamara B. Harris; Qiong Yang; Abbas Dehghan; Thor Aspelund; Ronit Katz; Georg Homuth; Thomas Kocher; Rainer Rettig; Janina S. Ried; Christian Gieger; Hanna Prucha; Arne Pfeufer; Thomas Meitinger; Josef Coresh; Albert Hofman; Mark J. Sarnak; Yii-Der I. Chen; André G. Uitterlinden; Aravinda Chakravarti; Bruce M. Psaty
Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels.