Georg Gdynia
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georg Gdynia.
Cancer Research | 2009
Stephan Singer; Mona Malz; Esther Herpel; Arne Warth; Michaela Bissinger; Martina Keith; Thomas Muley; Michael Meister; Hans Hoffmann; Roland Penzel; Georg Gdynia; Volker Ehemann; Philipp A. Schnabel; Ruprecht Kuner; Peter E. Huber; Peter Schirmacher; Kai Breuhahn
Dynamic instability of the microtubule network modulates processes such as cell division and motility, as well as cellular morphology. Overexpression of the microtubule-destabilizing phosphoprotein stathmin is frequent in human malignancies and represents a promising therapeutic target. Although stathmin inhibition gives rise to antineoplastic effects, additional and functionally redundant microtubule-interacting proteins may attenuate the efficiency of this therapeutic approach. We have systematically analyzed the expression and potential protumorigenic effects of stathmin family members in human non-small cell lung cancer (NSCLC). Both stathmin and stathmin-like 3 (SCLIP) were overexpressed in adenocarcinoma as well as squamous cell carcinoma (SCC) tissues and induced tumor cell proliferation, migration, and matrix invasion in respective cell lines. Accordingly, reduced stathmin and SCLIP levels affected cell morphology and were associated with a less malignant phenotype. Combined inhibition of both factors caused additive effects on tumor cell motility, indicating partial functional redundancy. Because stathmin and SCLIP expression significantly correlated in NSCLC tissues, we searched for common upstream regulators and identified the far upstream sequence element-binding protein-1 (FBP-1) as a pivotal inducer of several stathmin family members. Our results indicate that the coordinated overexpression of microtubule-destabilizing factors by FBP-1 is a critical step to facilitate microtubule dynamics and subsequently increases proliferation and motility of tumor cells.
Gut | 2009
Benjamin Funke; Frank Autschbach; Sunghee Kim; Felix Lasitschka; Ulrike Strauch; Gerhard Rogler; Georg Gdynia; Li Li; Norbert Gretz; Stephan Macher-Goeppinger; Bernd Sido; Peter Schirmacher; Stefan Meuer; Wilfried Roth
Aims: Both epithelial barrier dysfunction and apoptosis resistance of immune cells contribute to the pathogenesis of Crohn’s disease. The soluble decoy receptor 3 (DcR3) acts in an anti-apoptotic manner by neutralising the death ligand CD95L. Here, we investigated the possible involvement of DcR3 in Crohn’s disease. Methods: The epithelial fraction of human small intestinal mucosa samples was obtained by laser microdissection. Expression of DcR3 was examined by global gene expression profiling, quantitative reverse transcription polymerase chain reaction, immunoblot analysis, and immunohistochemistry. DcR3 concentrations in the serum of patients with Crohn’s disease were measured by enzyme-linked immunosorbent assay. Apoptosis assays were performed to study the effects of DcR3 in intestinal epithelial cells and lamina propria T cells. Results: DcR3 is over-expressed in the epithelial layer of ileum specimens in patients with Crohn’s disease, both at actively inflamed and non-active sites. DcR3 serum levels are significantly elevated in patients with active and non-active Crohn’s disease as compared to healthy controls. The expression of DcR3 in intestinal epithelial cells is induced by tumour necrosis factor α. Increased DcR3 expression is associated with activation of nuclear factor kappa B (NF-κB) and results in protection of intestinal epithelial cells and lamina propria T cells from CD95L-induced apoptosis. Conclusions: DcR3 may promote inflammation in Crohn’s disease by inhibiting CD95L-induced apoptosis of epithelial and immune cells as well as by inducing NF-κB activation.
Hepatology | 2010
Benjamin Goeppert; Peter Schmezer; Céline Dutruel; Christopher C. Oakes; Marcus Renner; Marco Breinig; Arne Warth; Monika Nadja Vogel; Michel Mittelbronn; Arianeb Mehrabi; Georg Gdynia; Roland Penzel; Thomas Longerich; Kai Breuhahn; Odilia Popanda; Christoph Plass; Peter Schirmacher; Michael A. Kern
The A kinase anchor protein 12 (AKAP12) is a central mediator of protein kinase A and protein kinase C signaling. Although AKAP12 has been described to act as a tumor suppressor and its expression is frequently down‐regulated in several human malignancies, the underlying molecular mechanisms responsible for the AKAP12 reduction are poorly understood. We therefore analyzed the expression of AKAP12 and its genetic and epigenetic regulatory mechanisms in human hepatocarcinogenesis. Based on tissue microarray analyses (n = 388) and western immunoblotting, we observed a significant reduction of AKAP12 in cirrhotic liver (CL), premalignant lesions (DN), and hepatocellular carcinomas (HCCs) compared to histologically normal liver specimens (NL). Analyses of array comparative genomic hybridization data (aCGH) from human HCCs revealed chromosomal losses of AKAP12 in 36% of cases but suggested additional mechanisms underlying the observed reduction of AKAP12 expression in hepatocarcinogenesis. Quantitative methylation analysis by MassARRAY of NL, CL, DN, and HCC tissues, as well as of various tumorigenic and nontumorigenic liver cell lines revealed specific hypermethylation of the AKAP12α promoter but not of the AKAP12β promoter in HCC specimens and in HCC cell lines. Consequently, restoration experiments performed with 5‐aza‐2′deoxycytidine drastically increased AKAP12α mRNA levels in a HCC cell line (AKN1) paralleled by AKAP12α promoter demethylation. As hypermethylation is not observed in CL and DN, we investigated microRNA‐mediated posttranscriptional regulation as an additional mechanism to explain reduced AKAP12 expression. We found that miR‐183 and miR‐186 are up‐regulated in CL and DN and are able to target AKAP12. Conclusion: In addition to genetic alterations, epigenetic mechanisms are responsible for the reduction of the tumor suppressor gene AKAP12 in human hepatocarcinogenesis. (HEPATOLOGY 2010;.)
Cancer Research | 2010
Georg Gdynia; Martina Keith; Jürgen Kopitz; Marion Bergmann; Anne Fassl; Alexander N.R. Weber; Julie George; Tim Kees; Hans Walter Zentgraf; Otmar D. Wiestler; Peter Schirmacher; Wilfried Roth
Cells dying by necrosis release the high-mobility group box 1 (HMGB1) protein, which has immunostimulatory effects. However, little is known about the direct actions of extracellular HMGB1 protein on cancer cells. Here, we show that recombinant human HMGB1 (rhHMGB1) exerts strong cytotoxic effects on malignant tumor cells. The rhHMGB1-induced cytotoxicity depends on the presence of mitochondria and leads to fast depletion of mitochondrial DNA, severe damage of the mitochondrial proteome by toxic malondialdehyde adducts, and formation of giant mitochondria. The formation of giant mitochondria is independent of direct nuclear signaling events, because giant mitochondria are also observed in cytoplasts lacking nuclei. Further, the reactive oxygen species scavenger N-acetylcysteine as well as c-Jun NH(2)-terminal kinase blockade inhibited the cytotoxic effect of rhHMGB1. Importantly, glioblastoma cells, but not normal astrocytes, were highly susceptible to rhHMGB1-induced cell death. Systemic treatment with rhHMGB1 results in significant growth inhibition of xenografted tumors in vivo. In summary, rhHMGB1 induces a distinct form of cell death in cancer cells, which differs from the known forms of apoptosis, autophagy, and senescence, possibly representing an important novel mechanism of specialized necrosis. Further, our findings suggest that rhHMGB1 may offer therapeutic applications in treatment of patients with malignant brain tumors.
Molecular Carcinogenesis | 2009
Sara Michel; Matthias Kloor; Sandhya Singh; Georg Gdynia; Wilfried Roth; Magnus von Knebel Doeberitz; Peter Schirmacher; Hendrik Bläker
Approximately 15% of small intestinal adenocarcinomas show inactivation of DNA‐mismatch repair (MMR) and display high‐level microsatellite instability (MSI‐H). MSI‐H tumors progress as a result of mutations affecting coding microsatellites (coding microsatellite instability, cMSI) that may result in a functional inactivation of the encoded proteins and provide a selective growth advantage for the affected cell. To investigate the cMSI selection in small intestinal carcinogenesis 56 adenocarcinomas were tested for MSI. Eleven MSI‐H carcinomas (19.6%) were identified and subjected to cMSI analysis in 24 potentially tumor relevant genes. Mutation frequencies were similar to those observed in colorectal cancer (CRC). Beside high frequencies of cMSI in TGFβR2, ACVR2, and AIM2 we detected MARCKS mutations in 10 out of 11 (91%) tumors with a 30% share of biallelic mutations. Since little is known about MARCKS expression in the intestine, we analyzed MARCKS protein expression in 31 carcinomas. In non‐neoplastic mucosa, MARCKS was found to be expressed with a concentration gradient along the crypt–villus axis. In line with cMSI induced functional inactivation of MARCKS, 8 out of 11 MSI‐H adenocarcinomas showed regional or complete loss of the protein. In microsatellite stable (MSS) small bowel adenocarcinoma, loss of MARCKS expression was seen in 2 out of 20 tumors (10%). In conclusion, we herein present a cMSI profile of MSI‐H small intestinal adenocarcinomas identifying MARCKS as a frequent target of mutation. Loss of MARCKS protein expression suggests a significant role of MARCKS inactivation in the pathogenesis of small intestinal adenocarcinomas.
Nature Communications | 2016
Georg Gdynia; Sven W. Sauer; Jürgen Kopitz; Dominik Fuchs; Katarina Duglova; Thorsten Ruppert; Matthias Miller; Jens Pahl; Adelheid Cerwenka; Markus Enders; Heimo Mairbäurl; Marcin M. Kamiński; Roland Penzel; Christine Zhang; Jonathan C. Fuller; Rebecca C. Wade; Axel Benner; Jenny Chang-Claude; Hermann Brenner; Michael Hoffmeister; Hanswalter Zentgraf; Peter Schirmacher; Wilfried Roth
The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer.
Apoptosis | 2008
Georg Gdynia; Judith Lehmann-Koch; Sebastian Sieber; Katrin E. Tagscherer; Anne Fassl; Hanswalter Zentgraf; Shu Ichi Matsuzawa; John C. Reed; Wilfried Roth
The HIPPI (HIP-1 protein interactor) protein is a multifunctional protein that is involved in the regulation of apoptosis. The interaction partners of HIPPI include HIP-1 (Huntingtin-interacting protein-1), Apoptin, Homer1c, Rybp/DEDAF, and BAR (bifunctional apoptosis regulator). In search for other binding partners of HIPPI, we performed a yeast two hybrid screen and identified BLOC1S2 (Biogenesis of lysosome-related organelles complex-1 subunit 2) as a novel HIPPI-interacting protein. In co-immunoprecipitation assays, BLOC1S2 specifically associates with HIPPI, but not with HIP-1. To study the expression of BLOC1S2 on the protein level, we generated a mouse monoclonal antibody specific for BLOC1S2 and a multiple tissue array comprising 70 normal and cancer tissue samples of diverse origin. BLOC1S2 protein is widely expressed in normal tissue as well as in malignant tumors with a tendency towards lower expression levels in certain subtypes of tumors. On the subcellular level, BLOC1S2 is expressed in an organellar-like pattern and co-localizes with mitochondria. Over-expression of BLOC1S2 in the presence or absence of HIPPI does not induce apoptosis. However, BLOC1S2 and HIPPI sensitize NCH89 glioblastoma cells to the pro-apoptotic actions of staurosporine and the death ligand TRAIL by enhancing caspase activation, cytochrome c release, and disruption of the mitochondrial membrane potential. Given its interaction with HIPPI and its pro-apoptotic activity, BLOC1S2 might play an important functional role in cancer and neurodegenerative diseases.
Cell Death and Disease | 2016
Anna Lena Scherr; Georg Gdynia; Mariam Salou; Praveen Radhakrishnan; Katarina Duglova; Anette Heller; Sophia Keim; Nicole Kautz; Adam Jassowicz; Christin Elssner; You-Wen He; Dirk Jaeger; Mathias Heikenwalder; Martin Schneider; Achim Weber; Wilfried Roth; Henning Schulze-Bergkamen; Bruno Christian Koehler
Colorectal cancer (CRC) is the second most common malignant neoplasia in women and men worldwide. The B-cell lymphoma 2 (Bcl-2) protein family is mainly known for its pivotal role in the regulation of the mitochondrial death pathway. Anti-apoptotic Bcl-2 proteins may provide survival benefits and induce therapy resistance in cancer cells. Among anti-apoptotic Bcl-2 proteins, we found solely Bcl-xL strongly upregulated in human CRC specimens. In order to study protein function in the context of tumor initiation and progression in vivo, we generated a mouse model lacking Bcl-xL in intestinal epithelial cells (Bcl-xLIEC-KO). If challenged in an inflammation-driven tumor model, Bcl-xLIEC-KO mice showed a significantly reduced tumor burden with lower tumor numbers per animal and decreased tumor sizes. Analysis of cell death events by immunohistochemistry and immunoblotting revealed a striking increase of apoptosis in Bcl-xL-negative tumors. qRT-PCR and immunohistochemistry excluded changes in proliferative capacity and immune cell infiltration as reasons for the reduced tumor load and thereby identify apoptosis as key mechanism. Human CRC tissue was cultured ex vivo and treated with the small molecule compound ABT-737, which inhibits Bcl-xL and Bcl-2. Under ABT-737 treatment, the amount of apoptotic tumor cells significantly increased compared with controls, whereas proliferation levels remained unaltered. In summary, our findings identify Bcl-xL as a driver in colorectal tumorigenesis and cancer progression, making it a valuable target for clinical application.
American Journal of Medical Genetics Part A | 2016
Christina Evers; Lilian T. Kaufmann; Angelika Seitz; Nagarajan Paramasivam; Martin Granzow; Stephanie Karch; Christine Fischer; Katrin Hinderhofer; Georg Gdynia; Michael Elsässer; Stefan Pinkert; Matthias Schlesner; Claus R. Bartram; Ute Moog
Intellectual disability (ID) with cerebellar ataxia comprises a genetically heterogeneous group of neurodevelopmental disorders. We identified a homozygous frameshift mutation in CWF19L1 (c.467delC; p.(P156Hfs*33)) by a combination of linkage analysis and Whole Exome Sequencing in a consanguineous Turkish family with a 9‐year‐old boy affected by early onset cerebellar ataxia and mild ID. Serial MRI showed mildly progressive cerebellar atrophy. Absent C19L1 protein expression in lymphoblastoid cell lines strongly suggested that c.467delC is a disease‐causing alteration. One further pregnancy of the mother had been terminated at 22 weeks of gestation because of a small cerebellum and agenesis of corpus callosum. The homozygous CWF19L1 variant was also present in the fetus. Postmortem examination of the fetus in addition showed unilateral hexadactyly and vertebral malformations. These features have not been reported and may represent an expansion of the CWF19L1‐related phenotypic spectrum, but could also be due to another, possibly autosomal recessive disorder. The exact function of the evolutionarily highly conserved C19L1 protein is unknown. So far, homozygous or compound heterozygous mutations in CWF19L1 have been identified in two Turkish siblings and a Dutch girl, respectively, affected by cerebellar ataxia and ID. A zebrafish model showed that CWF19L1 loss‐of‐function mutations result in abnormal cerebellar morphology and movement disorders. Our report corroborates that loss‐of‐function mutations in CWF19Ll lead to early onset cerebellar ataxia and (progressive) cerebellar atrophy.
Biospektrum | 2011
Georg Gdynia; Wilfried Roth
ZusammenfassungStörungen in der Regulation des Zelltodes sind wichtige Ursachen für die Entstehung von Krebs. Das HMGB1-Protein löst eine bislang nicht beschriebene Art des Zelltodes aus, die zukünftig auch zur Therapie maligner Tumoren genützt werden könnte.AbstractDefects in the regulation of cell death contribute to the development of cancer. The HMGB1 protein induces a novel type of cell death which could be employed in the therapy of malignant tumors in the future.