Georg Krainer
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georg Krainer.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Arndt Pechstein; Jelena Bacetic; Ardeschir Vahedi-Faridi; Kira V. Gromova; Anna Sundborger; Nikolay Tomlin; Georg Krainer; Olga Vorontsova; Johannes G. Schäfer; Simen G. Owe; Michael A. Cousin; Wolfram Saenger; Oleg Shupliakov; Volker Haucke
Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses.
Analytical Chemistry | 2012
Georg Krainer; Jana Broecker; Carolyn Vargas; Jörg Fanghänel; Sandro Keller
A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.
Journal of Biological Chemistry | 2010
Nina Kahlfeldt; Ardeschir Vahedi-Faridi; Seong Joo Koo; Johannes G. Schäfer; Georg Krainer; Sandro Keller; Wolfram Saenger; Michael Krauss; Volker Haucke
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the Iγ-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P2 metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKIγ-p90 associates with both the μ and β2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKIγ-p90 tail binds to a cognate recognition site on the sandwich subdomain of the β2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2μ, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKIγ-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKIγ tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2β and AP-2μ. Our data also suggest that interactions between AP-2 and the tail domain of PIPKIγ-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKIγ-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P2 synthesis during clathrin-mediated SV endocytosis.
Nano Letters | 2015
Georg Krainer; Andreas Hartmann; Michael Schlierf
Single-molecule Förster resonance energy transfer (smFRET) has become a powerful nanoscopic tool in studies of biomolecular structures and nanoscale objects; however, conventional smFRET measurements are generally blind to distances above 10 nm thus impeding the study of long-distance phenomena. Here, we report the development of farFRET, a technique that extends the range in smFRET measurements beyond the 10 nm line by enhanced energy transfer using multiple acceptors. We demonstrate that farFRET can be readily employed to quantify FRET efficiencies and conformational dynamics using double-stranded DNA molecules, RecA-filament formation on single-stranded DNA and Holliday junction dynamics. farFRET allows quantitative measurements of large biomolecular complexes and nanostructures thus bridging the remaining gap to superresolution microscopy.
Methods | 2015
Georg Krainer; Sandro Keller
Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.
Molecules | 2014
Andreas Hartmann; Georg Krainer; Michael Schlierf
Changes in molecular conformations are one of the major driving forces of complex biological processes. Many studies based on single-molecule techniques have shed light on conformational dynamics and contributed to a better understanding of living matter. In particular, single-molecule FRET experiments have revealed unprecedented information at various time scales varying from milliseconds to seconds. The choice and the attachment of fluorophores is a pivotal requirement for single-molecule FRET experiments. One particularly well-studied millisecond conformational change is the opening and closing of DNA hairpin structures. In this study, we addressed the influence of base- and terminal-labeled fluorophores as well as the fluorophore DNA interactions on the extracted kinetic information of the DNA hairpin. Gibbs free energies varied from ∆G0 = −3.6 kJ/mol to ∆G0 = −0.2 kJ/mol for the identical DNA hairpin modifying only the labeling scheme and design of the DNA sample. In general, the base-labeled DNA hairpin is significantly destabilized compared to the terminal-labeled DNA hairpin and fluorophore DNA interactions additionally stabilize the closed state of the DNA hairpin. Careful controls and variations of fluorophore attachment chemistry are essential for a mostly undisturbed measurement of the underlying energy landscape of biomolecules.
Analytical Biochemistry | 2016
Vaida Linkuvienė; Georg Krainer; Wen-Yih Chen; Daumantas Matulis
Isothermal titration calorimetry (ITC) is one of the most robust label- and immobilization-free techniques used to measure protein - small molecule interactions in drug design for the simultaneous determination of the binding affinity (ΔG) and the enthalpy (ΔH), both of which are important parameters for structure-thermodynamics correlations. It is important to evaluate the precision of the method and of various ITC instrument models by performing a single well-characterized reaction. The binding between carbonic anhydrase II and acetazolamide was measured by four ITC instruments - PEAQ-ITC, iTC200, VP-ITC, and MCS-ITC and the standard deviation of ΔG and ΔH was determined. Furthermore, the limit of an approach to reduce the protein concentration was studied for a high-affinity reaction (Kdxa0=xa00.3xa0nM), too tight to be measured by direct (non-displacement) ITC. Chemical validation of the enthalpy measurements is discussed.
Analytical Chemistry | 2015
Andreas Hartmann; Georg Krainer; Sandro Keller; Michael Schlierf
An increasing number of membrane proteins in different membrane-mimetic systems have become accessible to reversible unfolding experiments monitored by well-established ensemble techniques. However, only little information is available about kinetic processes during membrane-protein folding, mainly because of experimental challenges and a lack of methods suitable for observing highly dynamic membrane proteins. Here, we present single-molecule Förster resonance energy transfer (smFRET) confocal spectroscopy as a powerful tool in kinetic studies of membrane-protein folding in membrane-mimetic environments. We have developed a rigorous workflow demonstrating how to identify and quantify such dynamic processes using a set of qualitative, semiquantitative, and quantitative analytical tools. Using this workflow, we analyzed urea-induced folding and unfolding experiments on the α-helical membrane protein Mistic in the presence of the zwitterionic detergent n-dodecylphosphocholine (DPC). We identified two-state interconversion dynamics on the millisecond time scale of a protein folding into and out of detergent micelles. Our results demonstrate that smFRET is a promising tool for probing the chemical physics of membrane-protein structure and dynamics in the complex and anisotropic environment of a hydrophilic/hydrophobic interface, providing insights into protein interconversion dynamics without the need and challenges of synchronization.
Small | 2017
Saminathan Ramakrishnan; Georg Krainer; Guido Grundmeier; Michael Schlierf; Adrian Keller
The stability of DNA origami nanostructures under various environmental conditions constitutes an important issue in numerous applications, including drug delivery, molecular sensing, and single-molecule biophysics. Here, the effect of Na+ and Mg2+ concentrations on DNA origami stability is investigated in the presence of urea and guanidinium chloride (GdmCl), two strong denaturants commonly employed in protein folding studies. While increasing concentrations of both cations stabilize the DNA origami nanostructures against urea denaturation, they are found to promote DNA origami denaturation by GdmCl. These inverse behaviors are rationalized by a salting-out of Gdm+ to the hydrophobic DNA base stack. The effect of cation-induced DNA origami denaturation by GdmCl deserves consideration in the design of single-molecule studies and may potentially be exploited in future applications such as selective denaturation for purification purposes.
Biophysical Journal | 2017
Georg Krainer; Pablo Gracia; Erik Frotscher; Andreas Hartmann; Philip Gröger; Sandro Keller; Michael Schlierf
Structural and dynamic investigations of unfolded proteins are important for understanding protein-folding mechanisms as well as the interactions of unfolded polypeptide chains with other cell components. In the case of outer-membrane proteins (OMPs), unfolded-state properties are of particular physiological relevance, because these proteins remain unfolded for extended periods of time during their biogenesis and rely on interactions with binding partners to support proper folding. Using a combination of ensemble and single-molecule spectroscopy, we have scrutinized the unfolded state of outer-membrane phospholipase A (OmpLA) to provide a detailed view of its structural dynamics on timescales from nanoseconds to milliseconds. We find that even under strongly denaturing conditions and in the absence of residual secondary structure, OmpLA populates anxa0ensemble of slowly (>100xa0ms) interconverting and conformationally heterogeneous unfolded states that lack the fast chain-reconfiguration motions expected for an unstructured, fully unfolded chain. The drastically slowed sampling of potentially folding-competent states, as compared with a random-coil polypeptide, may contribute to the slow inxa0vitro folding kinetics observed for many OMPs. Inxa0vivo, however, slow intramolecular long-range dynamics might be advantageous for entropically favored binding of unfolded OMPs to chaperones and, by facilitating conformational selection after release from chaperones, for preserving binding-competent conformations before insertion into the outer membrane.