Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg M. Lauer is active.

Publication


Featured researches published by Georg M. Lauer.


Journal of Virology | 2001

Sustained Dysfunction of Antiviral CD8+ T Lymphocytes after Infection with Hepatitis C Virus

Norbert H. Gruener; Franziska Lechner; Maria-Christina Jung; Helmut M. Diepolder; Tilman Gerlach; Georg M. Lauer; Bruce D. Walker; John L. Sullivan; Rodney E. Phillips; Gerd R. Pape; Paul Klenerman

ABSTRACT Hepatitis C virus (HCV) sets up persistent infection in the majority of those exposed. It is likely that, as with other persistent viral infections, the efficacy of T-lymphocyte responses influences long-term outcome. However, little is known about the functional capacity of HCV-specific T-lymphocyte responses induced after acute infection. We investigated this by using major histocompatibility complex class I-peptide tetrameric complexes (tetramers), which allow direct detection of specific CD8+T lymphocytes ex vivo, independently of function. Here we show that, early after infection, virus-specific CD8+ T lymphocytes detected with a panel of four such tetramers are abnormal in terms of their synthesis of antiviral cytokines and lytic activity. Furthermore, this phenotype is commonly maintained long term, since large sustained populations of HCV-specific CD8+ T lymphocytes were identified, which consistently had very poor antiviral cytokine responses as measured in vitro. Overall, HCV-specific CD8+T lymphocytes show reduced synthesis of tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) after stimulation with either mitogens or peptides, compared to responses to Epstein-Barr virus and/or cytomegalovirus. This behavior of antiviral CD8+ T lymphocytes induced after HCV infection may contribute to viral persistence through failure to effectively suppress viral replication.


Hepatology | 2008

Naturally Occurring Dominant Resistance Mutations to Hepatitis C Virus Protease and Polymerase Inhibitors in Treatment-Naïve Patients

Thomas Kuntzen; Joerg Timm; Andrew Berical; Niall J. Lennon; Aaron M. Berlin; Sarah K. Young; Bongshin Lee; David Heckerman; Jonathan M. Carlson; Laura L. Reyor; Marianna Kleyman; Cory McMahon; Christopher Birch; Julian Schulze zur Wiesch; Timothy Ledlie; Michael Koehrsen; Chinnappa D. Kodira; Andrew Roberts; Georg M. Lauer; Hugo R. Rosen; Florian Bihl; Andreas Cerny; Ulrich Spengler; Zhimin Liu; Arthur Y. Kim; Yanming Xing; Arne Schneidewind; Margaret A. Madey; Jaquelyn F. Fleckenstein; Vicki Park

Resistance mutations to hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease inhibitors in <1% of the viral quasispecies may still allow >1000‐fold viral load reductions upon treatment, consistent with their reported reduced replicative fitness in vitro. Recently, however, an R155K protease mutation was reported as the dominant quasispecies in a treatment‐naïve individual, raising concerns about possible full drug resistance. To investigate the prevalence of dominant resistance mutations against specifically targeted antiviral therapy for HCV (STAT‐C) in the population, we analyzed HCV genome sequences from 507 treatment‐naïve patients infected with HCV genotype 1 from the United States, Germany, and Switzerland. Phylogenetic sequence analysis and viral load data were used to identify the possible spread of replication‐competent, drug‐resistant viral strains in the population and to infer the consequences of these mutations upon viral replication in vivo. Mutations described to confer resistance to the protease inhibitors Telaprevir, BILN2061, ITMN‐191, SCH6 and Boceprevir; the NS5B polymerase inhibitor AG‐021541; and to the NS4A antagonist ACH‐806 were observed mostly as sporadic, unrelated cases, at frequencies between 0.3% and 2.8% in the population, including two patients with possible multidrug resistance. Collectively, however, 8.6% of the patients infected with genotype 1a and 1.4% of those infected with genotype 1b carried at least one dominant resistance mutation. Viral loads were high in the majority of these patients, suggesting that drug‐resistant viral strains might achieve replication levels comparable to nonresistant viruses in vivo. Conclusion: Naturally occurring dominant STAT‐C resistance mutations are common in treatment‐naïve patients infected with HCV genotype 1. Their influence on treatment outcome should further be characterized to evaluate possible benefits of drug resistance testing for individual tailoring of drug combinations when treatment options are limited due to previous nonresponse to peginterferon and ribavirin. (HEPATOLOGY 2008;48:1769–1778.)


Journal of Experimental Medicine | 2004

CD8 Epitope Escape and Reversion in Acute HCV Infection

Joerg Timm; Georg M. Lauer; Daniel G. Kavanagh; Isabelle Sheridan; Arthur Y. Kim; Michaela Lucas; Thillagavathie Pillay; Kei Ouchi; Laura L. Reyor; Julian Schulze zur Wiesch; Rajesh T. Gandhi; Raymond T. Chung; Nina Bhardwaj; Paul Klenerman; Bruce D. Walker; Todd M. Allen

In the setting of acute hepatitis C virus (HCV) infection, robust HCV-specific CD8+ cytotoxic T lymphocyte (CTL) responses are associated with initial control of viremia. Despite these responses, 70–80% of individuals develop persistent infection. Although viral escape from CD8 responses has been illustrated in the chimpanzee model of HCV infection, the effect of CD8 selection pressure on viral evolution and containment in acute HCV infection in humans remains unclear. Here, we examined viral evolution in an immunodominant human histocompatibility leukocyte antigen (HLA)-B8–restricted NS3 epitope in subjects with acute HCV infection. Development of mutations within the epitope coincided with loss of strong ex vivo tetramer and interferon γ enzyme-linked immunospot responses, and endogenous expression of variant NS3 sequences suggested that the selected mutations altered processing and presentation of the variant epitope. Analysis of NS3 sequences from 30 additional chronic HCV-infected subjects revealed a strong association between sequence variation within this region and expression of HLA-B8, supporting reproducible allele-specific selection pressures at the population level. Interestingly, transmission of an HLA-B8–associated escape mutation to an HLA-B8 negative subject resulted in rapid reversion of the mutation. Together, these data indicate that viral escape from CD8+ T cell responses occurs during human HCV infection and that acute immune selection pressure is of sufficient magnitude to influence HCV evolution.


Journal of Clinical Investigation | 2003

Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers

Cheryl L. Day; Nilufer P. Seth; Michaela Lucas; Heiner Appel; Laurent Gauthier; Georg M. Lauer; Gregory K. Robbins; Zbigniew M. Szczepiorkowski; Deborah Casson; Raymond T. Chung; Shannon Bell; Gillian Harcourt; Bruce D. Walker; Paul Klenerman; Kai W. Wucherpfennig

Containment of hepatitis C virus (HCV) and other chronic human viral infections is associated with persistence of virus-specific CD4 T cells, but ex vivo characterization of circulating CD4 T cells has not been achieved. To further define the phenotype and function of these cells, we developed a novel approach for the generation of tetrameric forms of MHC class II/peptide complexes that is based on the cellular peptide-exchange mechanism. HLA-DR molecules were expressed as precursors with a covalently linked CLIP peptide, which could be efficiently exchanged with viral peptides following linker cleavage. In subjects who spontaneously resolved HCV viremia, but not in those with chronic progressive infection, HCV tetramer-labeled cells could be isolated by magnetic bead capture despite very low frequencies (1:1,200 to 1:111,000) among circulating CD4 T cells. These T cells expressed a set of surface receptors (CCR7+CD45RA-CD27+) indicative of a surveillance function for secondary lymphoid structures and had undergone significant in vivo selection since they utilized a restricted Vbeta repertoire. These studies demonstrate a relationship between clinical outcome and the presence of circulating CD4 T cells directed against this virus. Moreover, they show that rare populations of memory CD4 T cells can be studied ex vivo in human diseases.


Science | 2012

Progenitor and Terminal Subsets of CD8+ T Cells Cooperate to Contain Chronic Viral Infection

Michael A. Paley; Daniela C. Kroy; Pamela M. Odorizzi; Jonathan B. Johnnidis; Douglas V. Dolfi; Burton E. Barnett; Elizabeth K. Bikoff; Elizabeth J. Robertson; Georg M. Lauer; Steven L. Reiner; E. John Wherry

Chronic infections strain the regenerative capacity of antiviral T lymphocyte populations, leading to failure in long-term immunity. The cellular and molecular events controlling this regenerative capacity, however, are unknown. We found that two distinct states of virus-specific CD8+ T cells exist in chronically infected mice and humans. Differential expression of the T-box transcription factors T-bet and Eomesodermin (Eomes) facilitated the cooperative maintenance of the pool of antiviral CD8+ T cells during chronic viral infection. T-bethi cells displayed low intrinsic turnover but proliferated in response to persisting antigen, giving rise to Eomeshi terminal progeny. Genetic elimination of either subset resulted in failure to control chronic infection, which suggests that an imbalance in differentiation and renewal could underlie the collapse of immunity in humans with chronic infections. Chronic viral infections like HIV are kept in check by two functionally distinct types of T lymphocyte. Chronic infections like hepatitis C virus (HCV) or HIV are hard on the immune system. In the face of a constant threat, some immune cells like T lymphocytes become “exhausted”; although present, they can no longer mount responses that are effective enough to eliminate the virus. These responses, however, are still important because in many cases they do keep the virus relatively controlled. The mechanisms underlying the population dynamics of T cell responses during chronic viral infection, however, are not well understood. Paley et al. (p. 1220) now demonstrate that the T-box transcription factors T-bet and Eomesodermin differentially regulate two phenotypically and functionally distinct subsets of antiviral CD8+ T cells in mice. The cooperation of these subsets may be important for antiviral immunity during chronic viral infections in humans.


Journal of Virology | 2002

Broad Specificity of Virus-Specific CD4+ T-Helper-Cell Responses in Resolved Hepatitis C Virus Infection

Cheryl L. Day; Georg M. Lauer; Gregory K. Robbins; Barbara H. McGovern; Alysse Wurcel; Rajesh T. Gandhi; Raymond T. Chung; Bruce D. Walker

ABSTRACT Vigorous virus-specific CD4+ T-helper-cell responses are associated with successful control of hepatitis C virus (HCV) and other human viral infections, but the breadth and specificity of responses associated with viral containment have not been defined. To address this we evaluated the HCV-specific CD4+ T-helper-cell response in HCV antibody-positive persons who lack detectable plasma viremia, and compared this response to that in persons with chronic HCV infection. Peripheral blood mononuclear cells were stimulated with HCV proteins, followed by measurement of HCV-specific CD4+-T-cell responses to a comprehensive set of overlapping HCV peptides by intracellular gamma interferon production. In three persons with resolved HCV infection studied in detail, 13 to 14 epitopes were targeted, but none was recognized by all three. The 37 defined epitopes were predominantly distributed among the HCV proteins core, NS3, NS4, and NS5. In an expanded analysis of responses to these proteins in persons with resolved infection, an average of 10 epitopes was targeted, whereas in persons with chronic viremia never was more than one epitope targeted (P < 0.001). This comprehensive analysis of the breadth and specificity of HCV-specific T-helper-cell responses indicates that up to 14 viral epitopes can be simultaneously targeted by circulating virus-specific CD4+ T helper cells in a controlled human viral infection. Moreover, these data provide important parameters for evaluation of candidate HCV vaccines, and provide rationale for immunotherapy in chronic HCV infection.


Hepatology | 2005

Comprehensive analyses of CD8+ T cell responses during longitudinal study of acute human hepatitis C

Andrea L. Cox; Timothy Mosbruger; Georg M. Lauer; Drew M. Pardoll; David L. Thomas; Stuart C. Ray

We comprehensively studied the cellular immune response during acute human hepatitis C virus (HCV) infection by monthly prospective sampling of persons at high risk of infection. In 19 of 23 subjects, interferon‐gamma–secreting T cells specific for 1 or more peptides spanning the entire HCV polyprotein were detected 1 to 3 months after infection. The median time to development of interferon gamma responses to HCV peptides was 33 days (range, 29‐50 days), and these responses peaked between 180 and 360 days. Nineteen subjects had sufficient follow‐up to determine outcome, with 15 (79%) developing persistent viremia and 4 (21%) clearing viremia spontaneously. Of those with progression to chronic infection and detectable T cell responses, all lost recognition of one or more antigens recognized during acute infection, and the median reduction in the magnitude of responses was 85%. Most significantly, despite ongoing viremia, those who had persistent infection did not develop new epitope specificities after the first 6 months of infection. In conclusion, in most individuals, the CD8+ T cell responses generated early in HCV infection decline in peripheral blood and are not replaced with new responses. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270‐9139/suppmat/index.html). (HEPATOLOGY 2005;42:104–112.)


Journal of Virology | 2002

Comprehensive Analysis of CD8+-T-Cell Responses against Hepatitis C Virus Reveals Multiple Unpredicted Specificities

Georg M. Lauer; Kei Ouchi; Raymond T. Chung; Tam N. Nguyen; Cheryl L. Day; Deborah R. Purkis; Markus Reiser; Arthur Y. Kim; Michaela Lucas; Paul Klenerman; Bruce D. Walker

ABSTRACT The hepatitis C virus (HCV)-specific CD8+-T-cell response is thought to play a critical role in HCV infection. Studies of these responses have largely relied on the analysis of a small number of previously described or predicted HCV epitopes, mostly restricted by HLA A2. In order to determine the actual breadth and magnitude of CD8+-T-cell responses in the context of diverse HLA class I alleles, we performed a comprehensive analysis of responses to all expressed HCV proteins. By using a panel of 301 overlapping peptides, we analyzed peripheral blood mononuclear cells (PBMC) from a cohort of 14 anti-HCV-positive, HLA A2-positive individuals in an enzyme-linked immunospot assay. Only four subjects had detectable HLA A2-restricted responses in PBMC, and only 3 of 19 predicted A2 epitopes were targeted, all of which were confirmed by tetramer analysis. In contrast, 9 of 14 persons showed responses with more comprehensive analyses, with many responses directed against previously unreported epitopes. These results indicate that circulating HCV-specific CD8+-T-cell responses can be detected in PBMC in the majority of infected persons and that these responses are heterogeneous with no immunodominant epitopes consistently recognized. Since responses to epitopes restricted by single HLA alleles such as HLA A2 do not predict the overall response in an individual, more comprehensive approaches, as shown here, should facilitate definition of the role of the CD8+-T-cell response in HCV infection. Moreover, the low level or absence of responses to many predicted epitopes provides a rationale for immunotherapeutic interventions to broaden cytotoxic-T-lymphocyte recognition.


Hepatology | 2014

The effects of female sex, viral genotype, and IL28B genotype on spontaneous clearance of acute hepatitis C virus infection.

Jason Grebely; Kimberly Page; Rachel Sacks-Davis; Maarten F. Schim van der Loeff; Thomas M. Rice; Julie Bruneau; Meghan D. Morris; Behzad Hajarizadeh; Janaki Amin; Andrea L. Cox; Arthur Y. Kim; Barbara H. McGovern; Janke Schinkel; Jacob George; Naglaa H. Shoukry; Georg M. Lauer; Lisa Maher; Andrew Lloyd; Margaret Hellard; Gregory J. Dore; Maria Prins

Although 20%‐40% of persons with acute hepatitis C virus (HCV) infection demonstrate spontaneous clearance, the time course and factors associated with clearance remain poorly understood. We investigated the time to spontaneous clearance and predictors among participants with acute HCV using Cox proportional hazards analyses. Data for this analysis were drawn from an international collaboration of nine prospective cohorts evaluating outcomes after acute HCV infection. Among 632 participants with acute HCV, 35% were female, 82% were Caucasian, 49% had interleukin‐28 (IL28)B CC genotype (rs12979860), 96% had injected drugs ever, 47% were infected with HCV genotype 1, and 7% had human immunodeficiency virus (HIV) coinfection. Twenty‐eight percent were HCV antibody negative/RNA positive at the time of acute HCV detection (early acute HCV). During follow‐up, spontaneous clearance occurred in 173 of 632, and at 1 year after infection, 25% (95% confidence interval [CI]: 21, 29) had cleared virus. Among those with clearance, the median time to clearance was 16.5 weeks (IQR: 10.5, 33.4), with 34%, 67%, and 83% demonstrating clearance at 3, 6, and 12 months. Adjusting for age, factors independently associated with time to spontaneous clearance included female sex (adjusted hazards ratio [AHR]: 2.16; 95% CI: 1.48, 3.18), IL28B CC genotype (versus CT/TT; AHR, 2.26; 95% CI: 1.52, 3.34), and HCV genotype 1 (versus non‐genotype 1; AHR: 1.56; 95% CI: 1.06, 2.30). The effect of IL28B genotype and HCV genotype on spontaneous clearance was greater among females, compared to males. Conclusions: Female sex, favorable IL28B genotype, and HCV genotype 1 are independent predictors of spontaneous clearance. Further research is required to elucidate the observed sex‐based differences in HCV control. (Hepatology 2014;58:109–120)


Clinical and Experimental Immunology | 2002

Cellular immune responses against hepatitis C virus: the evidence base 2002.

Scott M. Ward; Georg M. Lauer; Rachel Isba; Bruce D. Walker; Paul Klenerman

Hepatitis C virus (HCV) is an RNA virus which is estimated to persistently infect about 170 million people worldwide. After acute infection, there is an initial period during which long‐term outcome is decided. There is strong evidence that the cellular immune responses, involving both CD4+ and CD8+ T lymphocytes, are involved at this stage and it is their effectiveness which determines outcome. What is not understood is what determines their effectiveness. The most important component of this is likely to be some aspect of epitope selection, itself dictated by host MHC. Thus, to understand host immunity to HCV, we need to have a detailed understanding of the peptides involved in T lymphocyte responses. In this review, we discuss the peptide epitopes that have been identified so far, and their potential significance. We relate this to a scheme of host defence which may be useful for understanding natural and vaccine‐induced immunity.

Collaboration


Dive into the Georg M. Lauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joerg Timm

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea L. Cox

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michaela Lucas

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge