Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georg Weidenspointner is active.

Publication


Featured researches published by Georg Weidenspointner.


Nature | 2011

Femtosecond x-ray protein nanocrystallography

Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Nature | 2011

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Astronomy and Astrophysics | 2003

SPI: The spectrometer aboard INTEGRAL

G. Vedrenne; J.-P. Roques; V. Schönfelder; P. Mandrou; Giselher G. Lichti; A. von Kienlin; Bertrand Cordier; S. Schanne; J. Knödlseder; G. Skinner; P. Jean; F. Sanchez; Patrizia A. Caraveo; B. J. Teegarden; P. von Ballmoos; L. Bouchet; P. Paul; J. L. Matteson; S. E. Boggs; Cornelia B. Wunderer; P. Leleux; Georg Weidenspointner; Ph. Durouchoux; R. Diehl; Andrew W. Strong; Michel Casse; M.-A. Clair; Y. André

SPI is a high spectral resolution gamma-ray telescope on board the ESA mission INTEGRAL (International Gamma Ray Astrophysics Laboratory). It consists of an array of 19 closely packed germanium detectors surrounded by an active anticoincidence shield of BGO. The imaging capabilities of the instrument are obtained with a tungsten coded aperture mask located 1.7 m from the Ge array. The fully coded field-of-view is 16degrees, the partially coded field of view amounts to 31degrees, and the angular resolution is 2.5degrees. The energy range extends from 20 keV to 8 MeV with a typical energy resolution of 2.5 keV at 1.3 MeV. Here we present the general concept of the instrument followed by a brief description of each of the main subsystems. INTEGRAL was successfully launched in October 2002 and SPI is functioning extremely well.


Astronomy and Astrophysics | 2003

Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy

P. Jean; J. Knödlseder; V. Lonjou; M. Allain; J.-P. Roques; G. Skinner; B. J. Teegarden; G. Vedrenne; P. von Ballmoos; B. Cordier; Patrizia A. Caraveo; R. Diehl; Ph. Durouchoux; P. Mandrou; J. L. Matteson; Neil Gehrels; V. Schönfelder; Andrew W. Strong; P. Ubertini; Georg Weidenspointner; C. Winkler

We report the first measurements of the 511 keV line emission from the Galactic Centre (GC) region performed with the spectrometer SPI on the space observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory). Taking into account the range of spatial distribution models which are consistent with the data, we derive a flux of 9:9 +4:7 2:1 10 4 ph cm 2 s 1 and an intrinsic line width of 2:95 +0:45 0:51 keV (FWHM). The results are consistent with other high-spectroscopy measurements, though the width is found to be at the upper bound of previously reported values.We report the first measurements of the 511 keV line emission from the Galactic Centre (GC) region performed with the spectrometer SPI on the space observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory). Taking into account the range of spatial distribution models which are consistent with the data, we derive a flux of


Optics Express | 2012

Time-resolved protein nanocrystallography using an X-ray free-electron laser

Andrew Aquila; Mark S. Hunter; R. Bruce Doak; Richard A. Kirian; Petra Fromme; Thomas A. White; Jakob Andreasson; David Arnlund; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Michael J. Bogan; Christoph Bostedt; Hervé Bottin; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; Daniel P. DePonte; Veit Elser; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Raimund Fromme; Heinz Graafsma; Ingo Grotjohann; Lars Gumprecht; Janos Hajdu

9.9^{+4.7}_{-2.1} \times 10^{-4}


Nature | 2008

An asymmetric distribution of positrons in the galactic disk revealed by big gamma-rays

Georg Weidenspointner; Gerry Skinner; P. Jean; J. Knödlseder; Peter von Ballmoos; G. F. Bignami; R. Diehl; Andrew W. Strong; Bertrand Cordier; S. Schanne; Christoph Winkler

ph cm


Nature Methods | 2012

In vivo protein crystallization opens new routes in structural biology

Rudolf Koopmann; Karolina Cupelli; Karol Nass; Daniel P. DePonte; Thomas A. White; Francesco Stellato; Dirk Rehders; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; Sébastien Boutet; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; R. Bruce Doak; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton

^{-2}


Nature Methods | 2012

Lipidic phase membrane protein serial femtosecond crystallography.

Linda C. Johansson; David Arnlund; Thomas A. White; Gergely Katona; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Robert L. Shoeman; Lukas Lomb; Erik Malmerberg; Jan Davidsson; Karol Nass; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma

s


Nature | 2012

Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight

N. D. Loh; Christina Y. Hampton; Andrew V. Martin; Dmitri Starodub; Raymond G. Sierra; A. Barty; Andrew Aquila; Joachim Schulz; Lukas Lomb; Jan Steinbrener; Robert L. Shoeman; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; A. Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; G. Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; M. M. Hunter; Lars Gumprecht; Nicola Coppola

^{-1}


Physical Review Letters | 2014

X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

Jochen Küpper; Stephan Stern; Lotte Holmegaard; Frank Filsinger; Arnaud Rouzée; Artem Rudenko; Per Johnsson; Andrew V. Martin; Marcus Adolph; Andrew Aquila; Sasa Bajt; Anton Barty; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Peter Holl; André Hömke; Nils Kimmel; Faton Krasniqi

and an intrinsic line width of

Collaboration


Dive into the Georg Weidenspointner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Grazia Pia

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

V. Schönfelder

Netherlands Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar

B. J. Teegarden

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

John D. Bozek

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge