George A. Truskey
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George A. Truskey.
Journal of Biomechanics | 2001
Anshu B. Mathur; Amy M. Collinsworth; William M. Reichert; William E. Kraus; George A. Truskey
This study evaluated the hypothesis that, due to functional and structural differences, the apparent elastic modulus and viscous behavior of cardiac and skeletal muscle and vascular endothelium would differ. To accurately determine the elastic modulus, the contribution of probe velocity, indentation depth, and the assumed shape of the probe were examined. Hysteresis was observed at high indentation velocities arising from viscous effects. Irreversible deformation was not observed for endothelial cells and hysteresis was negligible below 1 microm/s. For skeletal muscle and cardiac muscle cells, hysteresis was negligible below 0.25 microm/s. Viscous dissipation for endothelial and cardiac muscle cells was higher than for skeletal muscle cells. The calculated elastic modulus was most sensitive to the assumed probe geometry for the first 60 nm of indentation for the three cell types. Modeling the probe as a blunt cone-spherical cap resulted in variation in elastic modulus with indentation depth that was less than that calculated by treating the probe as a conical tip. Substrate contributions were negligible since the elastic modulus reached a steady value for indentations above 60 nm and the probe never indented more than 10% of the cell thickness. Cardiac cells were the stiffest (100.3+/-10.7 kPa), the skeletal muscle cells were intermediate (24.7+/-3.5 kPa), and the endothelial cells were the softest with a range of elastic moduli (1.4+/-0.1 to 6.8+/-0.4 kPa) depending on the location of the cell surface tested. Cardiac and skeletal muscle exhibited nonlinear elastic behavior. These passive mechanical properties are generally consistent with the function of these different cell types.
Biophysical Journal | 2000
Anshu B. Mathur; George A. Truskey; W. Monty Reichert
This paper describes the combined use of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRFM) to examine the transmission of force from the apical cell membrane to the basal cell membrane. A Bioscope AFM was mounted on an inverted microscope, the stage of which was configured for TIRFM imaging of fluorescently labeled human umbilical vein endothelial cells (HUVECs). Variable-angle TIRFM experiments were conducted to calibrate the coupling angle with the depth of penetration of the evanescent wave. A measure of cellular mechanical properties was obtained by collecting a set of force curves over the entire apical cell surface. A linear regression fit of the force-indentation curves to an elastic model yields an elastic modulus of 7.22 +/- 0. 46 kPa over the nucleus, 2.97 +/- 0.79 kPa over the cell body in proximity to the nucleus, and 1.27 +/- 0.36 kPa on the cell body near the edge. Stress transmission was investigated by imaging the response of the basal surface to localized force application over the apical surface. The focal contacts changed in position and contact area when forces of 0.3-0.5 nN were applied. There was a significant increase in focal contact area when the force was removed (p < 0.01) from the nucleus as compared to the contact area before force application. There was no significant change in focal contact coverage area before and after force application over the edge. The results suggest that cells transfer localized stress from the apical to the basal surface globally, resulting in rearrangement of contacts on the basal surface.
Journal of Biomedical Materials Research | 1997
A. Adam Sharkawy; Bruce Klitzman; George A. Truskey; W. Monty Reichert
This report uses normal rat subcutis as a reference point to provide a quantitative analysis of small analyte transport through the tissue which encapsulates implants. Polyvinyl alcohol (PVA) with 60- and 350-micron mean pore size (PVA-60, PVA-350), nonporous PVA (PVA-skin), and stainless-steel cage (SS) specimens were implanted in the subcutis of Sprague-Dawley rats for 4 weeks to elicit a range of capsular wound-healing tissues. Histologic examination showed that the capsular tissue which formed around PVA-skin and SS specimens was densely fibrous and avascular. That forming around PVA-60 and PVA-350 was less densely fibrous and more vascular. The fibrous content of capsular tissue and subcutis was determined from eosin-stained histologic sections. Dual-chamber diffusion measurements of sodium fluorescein (Mw 376 g/mol) through capsular tissue and normal rat subcutis were used to quantitatively compare the effective diffusion coefficients of small analytes on the order of glucose. The two most fibrous capsular tissues exhibited diffusion coefficients that were statistically (p < 0.05) less than that determined for rat subcutis by 50 and 25% for PVA-skin and SS, respectively. The diffusion coefficients of the less dense capsular tissue which formed around the porous implants were not statistically different from subcutis. The experimentally measured diffusion coefficients of the two most fibrous capsular tissues were closely predicted by a simple two-component diffusion model consisting of an aqueous interstitium with an array of impenetrable bodies equal in volume fraction to the fibrous content of the tissue. This model overestimates the diffusion coefficients measured for the least fibrous tissues. Using the diffusion coefficient measured for the PVA-skin capsular tissue, a finite difference model predicts that a 200-microns-thick capsular layer would increase from 5 to 20 min the time required for subcutaneously implanted sensor to detect 95% of the blood analyte concentration. This study suggests that the fibrous capsule forming around a subcutaneously implanted smooth-surface sensor imposes a significant diffusion barrier to small analytes such as glucose, thus increasing the lag time of the sensor by as much as threefold. A corollary observation is that a sensor with a porous surface which allows tissue ingrowth may be more responsive to blood analyte fluctuations as a result of its a more vascular and less fibrous encapsulation tissue.
Circulation Research | 1995
Anthony Kanai; Harold C. Strauss; George A. Truskey; Anne L. Crews; Saul Grunfeld; Tadeusz Malinski
Shear stress causes the vascular endothelium to release nitric oxide (NO), which is an important regulator of vascular tone. However, direct measurement of NO release after the imposition of laminar flow has not been previously accomplished because of chemical (oxidative degradation) and physical (diffusion, convection, and washout) complications. Consequently, the mechanism, time course, kinetics, and Ca2+ dependence of NO release due to shear stress remain incompletely understood. In this study, we characterized these parameters by using fura 2 fluorescence and a polymeric porphyrin/Nafion-coated carbon fiber microsensor (detection limit, 5 nmol/L; response time, 1 millisecond) to directly measure changes in [Ca2+]i and NO release due to shear stress or agonist (ATP or brominated Ca2+ ionophore [Br-A23187]) from bovine aortic endothelial cells. The cells were grown to confluence on glass coverslips, loaded with fura 2-AM, and mounted in a parallel-plate flow chamber (volume, 25 microL). The microsensor was positioned approximately 100 microns above the cells with its long axis parallel to the direction of flow. Laminar flow of perfusate was maintained from 0.04 to 1.90 mL/min, which produced shear stresses of 0.2 to 10 dyne/cm2. Shear stress caused transient NO release 3 to 5 seconds after the initiation of flow and 1 to 3 seconds after the rise in [Ca2+]i, which reached a plateau after 35 to 70 seconds. Although the amount (peak rate) of NO release increased as a function of the shear stress (0.08 to 3.80 pmol/s), because of the concomitant increase in the flow rate, the peak NO concentration (133 +/- 9 nmol/L) remained constant. Maintenance of flow resulted in additional transient NO release, with peak-to-peak intervals of 15.5 +/- 2.5 minutes. During this 13- to 18-minute period, when the cells were unresponsive to shear stress, exogenous ATP (10 mumol/L) or Br-A23187 (10 mumol/L) evoked NO release. Prior incubation of the cells with exogenous NO or the removal and EGTA (100 mumol/L) chelation of extracellular Ca2+ blocked shear stress but not ATP-dependent NO release. The kinetics of shear stress-induced NO release (2.23 +/- 0.07 nmol/L per second) closely resembled the kinetics of Ca2+ flux but differed markedly from the kinetics of ATP-induced NO release (5.64 +/- 0.32 nmol/L per second). These data argue that shear stress causes a Ca(2+)-mediated ATP-independent transient release of NO, where the peak rate of release but not the peak concentration depends on the level of shear stress.(ABSTRACT TRUNCATED AT 400 WORDS)
Journal of Clinical Investigation | 1998
Manisha Udani; Qin Zen; Maisha J. Cottman; N. Leonard; S. Jefferson; C. Daymont; George A. Truskey; Marilyn J. Telen
Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors.
Journal of Biomedical Materials Research | 1998
A. Adam Sharkawy; Bruce Klitzman; George A. Truskey; W. Monty Reichert
This study assesses the plasma-tissue exchange characteristics of the capsular tissue that forms around implants and how they are affected by implant porosity. The number of vessels and their permeability to rhodamine were measured by intravascular injection of the fluorophore tracer into Sprague-Dawley rats that hosted for 3-4 months polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE) subcutaneous implants. Rats were implanted with four pore sizes of PVA--a nonporous PVA (PVA-skin), and 5, 60, and 700 micron mean pore sizes (PVA-5, PVA-60, and PVA-700, respectively)--and two pore sizes of PTFE: 0.50 (PTFE-0.5) and 5.0 (PTFE-5) mean micron pore sizes. Photodensitometric image analysis was used to quantify the local tracer extravasation and, hence the permeability coefficients of isolated vessels around the implants. The number of functional vessels within 100 microm of the implants highlighted by the lissamine-rhodamine tracer were counted with fluorescence microscopy and with H&E stained sections using brightfield microscopy. The permeability of vessels did not vary substantially with implant pore size but generally were lower than those measured for surrounding subcutis. Pore size, however, had a dramatic effect on the vascular density of tissue-encapsulating implants: the number of microvessels (under 10 microm in radius) within the tissue surrounding the porous implants was higher than the number around nonporous implants. Pore sizes on the order of cellular dimensions incited optimal neovascularization; the vascular density around PVA-60 implants was six times higher (p < .001) and three times higher (p < .001) than those around PVA-0 implants in the fluorescent images and in brightfield, respectively. Moreover, brightfield microscopy showed the number of vessels around PVA-60 implants was almost double those in normal subcutis. The results suggest that optimal vascular density around long-term implants, such as sensors, biofluid cell constructs, and immunoisolated cell systems, may be engineered with pore size.
Biophysical Journal | 1996
Y. Xiao; George A. Truskey
The objective of this study was to determine the effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Linear and cyclic forms of the fibronectin (Fn) cell-binding domain peptide Arg-Gly-Asp (RGD) were covalently immobilized to glass, and Fn was adsorbed onto glass slides. Bovine aortic endothelial cells attached to the surfaces for 15 min. The critical wall shear stress at which 50% of the cells detached increased nonlinearly with ligand density and was greater with immobilized cyclic RGD than with immobilized linear RGD or adsorbed Fn. To directly compare results for the different ligand densities, the receptor-ligand dissociation constant and force per bond were estimated from data for the critical shear stress and contact area. Total internal reflection fluorescence microscopy was used to measure the contact area as a function of separation distance. Contact area increased with increasing ligand density. Contact areas were similar for the immobilized peptides but were greater on surfaces with adsorbed Fn. The dissociation constant was determined by nonlinear regression of the net force on the cells to models that assumed that bonds were either uniformly stressed or that only bonds on the periphery of the contact region were stressed (peeling model). Both models provided equally good fits for cells attached to immobilized peptides whereas the peeling model produced a better fit of data for cells attached to adsorbed Fn. Cyclic RGD and linear RGD both bind to the integrin alpha v beta 3, but immobilized cyclic RGD exhibited a greater affinity than did linear RGD. Receptor affinities of Fn adsorbed to glycophase glass and Fn adsorbed to glass were similar. The number of bonds was calculated assuming binding equilibrium. The peeling model produced good linear fits between bond force and number of bonds. Results of this study indicate that 1) bovine aortic endothelial cells are more adherent on immobilized cyclic RGD peptide than linear RGD or adsorbed Fn, 2) increased adhesion is due to a greater affinity between cyclic RGD and its receptor, and 3) the affinity of RGD peptides and adsorbed Fn for their receptors is increased after immobilization.
Atherosclerosis | 1999
John R. Buchanan; Clement Kleinstreuer; George A. Truskey; Ming Lei
Using the rabbits aorto-celiac junction as a representative atherosclerotic model, the hemodynamics of a bifurcating blood vessel are numerically simulated and three hemodynamic parameters are compared. The wall shear stress (WSS), the oscillatory shear index (OSI), and the spatial wall shear stress gradient (WSSG) are considered in this study. Locally enhanced wall permeabilities and intimal macrophages are generally considered to be involved in atherogenesis, and here the primary concern is with the hemodynamic influence on these early stages of the disease process. In comparing the segmental averages of the indicator functions and previously published intimal white blood cell densities, only the WSSG shows a statistically significant correlation. All three indicators have selective strengths in determining sites of early lesion growth around the aorto-celiac flow divider. At the proximal end of the flow divider on the lateral side of the orifice, there are elevated values of the OSI as well as WSSG and low WSS values. Regions of elevated wall permeabilities compare with the regions of elevated WSSG along the lateral and distal portions of the flow divider. Largely dependent upon the present input pulse with reverse flow, the OSI indicates relatively high values throughout the flow domain, however, it is important when utilized in conjunction with low WSS regions. This study presents a rationale for further quantitative correlative studies in the rabbit model based on additional histological data sets.
Journal of Biomedical Materials Research | 1998
A. Adam Sharkawy; Bruce Klitzman; George A. Truskey; W. Monty Reichert
The results of two previous studies have shown that implant porosity can be used to increase both the measured diffusion coefficients and the vascularity within the tissue encapsulating long-term subcutaneous implants. This study investigates the hypothesis that the analyte concentrations within the tissue surrounding porous implants will respond more quickly to changes in plasma levels than does the densely packed, avascular fibrous capsule surrounding nonporous implants. The average concentration of lissamine-rhodamine was measured in tissue within 100 microm of the following implants at four different times following injection of the tracer: PVA-skin, PVA-5, PVA-60, PVA-700 (polyvinyl alcohol nonporous, 5 microm, 60 microm, and 700 microm mean pore sizes, respectively) and PTFE-0.5 and PTFE-5 (polytetrafluoroethylene 0.5 microm and 5 microm mean pore sizes, respectively). The results were compared to those of unimplanted subcutaneous tissue (SQ). In addition, the data were analyzed with a simple two-compartment model in which a tissue response time constant (taup) was extracted. As in the case of vascular density, the cellular dimension of the PVA-60 pore sizes produced surrounding tissue with the optimum response times to changes in plasma concentrations. The concentrations of rhodamine within the tissue surrounding the PVA-60 implant were the highest at all time points and responded to the change in plasma rhodamine concentration approximately three times more quickly (taup = 764 s) than the fibrous tissue encapsulating the nonporous PVA-skin (taup = 2058 s) and more than twice as quickly as SQ (taup = 1627 s). The overall mass transfer rate between plasma and the tissue surrounding the different implants calculated from the permeability and density of vessels from the previous study correlated very well (r2 = 0.7, p < .02, slope of 0.98) with the reciprocal of the tissue response time constant (taup).
Journal of Biomedical Optics | 2011
Natan T. Shaked; Lisa L. Satterwhite; Marilyn J. Telen; George A. Truskey; Adam Wax
We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.