George Aggelis
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Aggelis.
Bioresource Technology | 2002
Seraphim Papanikolaou; George Aggelis
Yarrowia lipolytica LGAM S(7)1 presented remarkable growth on industrial glycerol used as sole carbon substrate. Nitrogen-limited flask cultures were accompanied by restricted synthesis of reserve lipid, whilst amounts of citric acid were produced extracellularly. On the contrary, high amounts of reserve lipid (up to 3.5 g/l, 43% w/w of lipids in dry biomass) were produced in highly aerated continuous cultures. Lipid production was favoured at low specific dilution rates whilst fat-free material yield increased over the whole range of D (h(-1)). The maximum volumetric productivity obtained was 0.12 g lipid/1 h. Storage lipid composition did not present remarkable changes in the specific dilution rates tested. Oleate and linoleate were the dominant cellular fatty acids.
Journal of Applied Microbiology | 2002
Seraphim Papanikolaou; L. Muniglia; I. Chevalot; George Aggelis; I. Marc
Aims: To study the biochemical response of Yarrowia lipolytica LGAM S(7)1 during growth on raw glycerol (the main by‐product of bio‐diesel production units) in order to produce metabolic products of industrial significance.
Bioresource Technology | 2010
Anna Makri; Stylianos Fakas; George Aggelis
The growth of Yarrowia lipolytica on glycerol was studied in bioreactor repeated batch cultures and three distinct phases, namely biomass production phase, lipogenic phase and citric acid production phase were identified during growth cycle. In each phase, yeast cells were characterised by specific morphological and biochemical features. Though high activity of NAD(+) dependent iso-citric dehydrogenase (NAD(+)-ICDH) was detected during biomass production phase, this activity was significantly decreased afterwards inducing lipogenesis. A further drop in NAD(+)-ICDH activity to minimal levels and a decrease in glycerol kinase activity were observed during the citric acid production phase. Surprisingly, citric acid production was accompanied by storage (neutral) lipid turnover, along with remarkable biosynthesis of glycolipids, sphingolipids and phospholipids. Oleic acid was the major fatty acid in all lipid fractions and phosphatidylcholine was the main phospholipid. This study allows concluding that Y. lipolytica successfully converts glycerol via phosphorylation pathway into valuable biotechnological products, such as single cell oil and citric acid.
Bioresource Technology | 2002
A. Tsioulpas; D. Dimou; D. Iconomou; George Aggelis
The ability of several Pleurotus spp. strains to remove phenolic compounds from an olive oil mill wastewater (OMW) was studied. All strains tested in this work were able to grow in OMW without any addition of nutrients and any pre-treatment, except sterilization. High laccase activity was measured in the growth medium, while 69-76% of the initial phenolic compounds were removed. The black color of OMW became yellow-brown and brighter as the strains grew. The lowest phenolic concentrations were reached after 12/15 days. A decrease of the phytotoxicity, as described by the parameter Germination Index, was noticed in the OMW treated with some Pleurotus spp strains, although this decrease was not proportional to the phenolic removal. A new parameter, namely Phenol-toxicity Index, was considered in the present paper. Using this parameter it was found that the remaining phenolics and/or some of the oxidation products of the laccase reaction in the treated OMW were more toxic than the original phenolic compounds.
Water Research | 2003
George Aggelis; D. Iconomou; M. Christou; D. Bokas; S. Kotzailias; G. Christou; V. Tsagou; S. Papanikolaou
Pleurotus ostreatus grown in bioreactor batch cultures in a model phenolic wastewater (diluted and sterilized olive oil mill wastewater-OMW), caused significant phenolic removal. Laccase, the sole ligninolytic enzyme detected in the growth environment, was produced during primary metabolic growth. The bioprocess was simulated with the aid of a mathematical model and the parameters of growth were determined. When the fungal biomass was increased in the reactor (during repeated batch experiments) the rate of reducing sugars consumption progressively increased, but a phenolic fraction seemed of being strongly resistant to oxidation. The toxicity of OMW against the seeds of Lepidium sativum and the marine Branchiopoda Artemia sp. was significantly decreased after biotreatment. On the contrary, the toxicity against the freshwater Branchiopoda Daphnia magna was not affected by the treatment, whereas on the soil and freshwater sediments Ostracoda Heterocypris incongruens was slightly decreased. Both treated and untreated OMWs, used as water for irrigation of lettuce and tomato plants, did not significantly affect the uptake of several nutrients by the cultivated plants, but resulted in a decrease in the plant yields, which was minimized when high OMW dilutions were used. As a conclusion, P. ostreatus is able to reduce phenolic content and toxicity of sterilized OMW, in bioreactor cultures. However, high OMW dilutions should be used, and/or additional treatment should be applied before use of the OMW in the environment, e.g. as water for irrigation. Further research should be done in order to transfer this technology under industrial conditions (e.g. by using unsterilized OMW).
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2001
Seraphim Papanikolaou; Isabelle Chevalot; Michael Komaitis; George Aggelis; Ivan Marc
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.
Journal of Applied Microbiology | 2004
Seraphim Papanikolaou; S. Sarantou; Michael Komaitis; George Aggelis
Aims: To study patterns of reserve lipid biosynthesis and turnover (degradation) in two oleaginous Zygomycetes, namely Cunninghamella echinulata and Mortierella isabellina under various growth conditions. Fatty acid composition of the reserve lipid of both strains was also studied in all growth steps.
Bioresource Technology | 2011
Ch.N. Economou; George Aggelis; Stavros Pavlou; D.V. Vayenas
Rice hull hydrolysate was used as feedstock for microbial lipids production using the oleaginous fungus Mortierella isabellina. Kinetic experiments were conducted in C/N ratios 35, 44 and 57 and the oil accumulation into fungal biomass was 36%, 51.2% and 64.3%, respectively. A detailed mathematical model was used in order to describe the lipid accumulation process. This model was able to predict reducing sugar and nitrogen consumption, fat-free biomass synthesis and lipid accumulation. Neutral lipids constitute the predominant lipid fraction, while the major fatty acids were oleic, palmitic and linoleic acid. Fatty acids of long aliphatic chain were not detected, thus the microbial oil produced is a promising feedstock for biodiesel production.
Current Microbiology | 2003
Seraphim Papanikolaou; Lionel Muniglia; Isabelle Chevalot; George Aggelis; Ivan Marc
Yarrowia lipolytica was cultivated on mixtures of saturated free fatty acids (an industrial derivative of animal fat called stearin), technical glycerol (the main by-product of bio-diesel production facilities), and glucose. The utilization of technical glycerol and stearin as co-substrates resulted in higher lipid synthesis and increased citric acid production than the combination of glucose and stearin. The lipids produced contained significant amounts of stearic acid (50–70%, wt/wt) and lower ones of palmitic (15–20%, wt/wt), oleic (7–20%, wt/wt), and linoleic (2–7%, wt/wt) acid. Single-cell oil having a composition similar to cocoa-butter up to 3.4 g/L was produced, whereas in some cases relatively increased citric acid quantities (up to 14 g/L) were excreted into the growth medium. The microorganism presented a high specificity for lauric, myristic, and palmitic acid, while a discrimination for the stearic acid was observed. As a conclusion, microbial metabolism could be directed by using mixtures of inexpensive saturated fats, glycerol, and glucose as co-substrates, in order to accumulate lipids with predetermined composition, e.g., cocoa-butter equivalents.
Biotechnology Advances | 2014
Stamatia Bellou; Mohammed N. Baeshen; Ahmed M. Elazzazy; Dimitra Aggeli; Fotoon Sayegh; George Aggelis
In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties. Therefore, algal production systems need to be improved and harvesting systems need to be more effective in order for their industrial applications to become more competitive and economically viable. Besides, a reduction of the production cost of microalgal lipids can be achieved by combining lipid production with other commercial applications. The combined production of bioactive products and lipids, when possible, can support the commercial viability of both processes. Hydrophobic compounds can be extracted simultaneously with lipids and then purified, while hydrophilic compounds such as proteins and sugars may be extracted from the defatted biomass. The microalgae also have applications in environmental biotechnology since they can be used for bioremediation of wastewater and to monitor environmental toxicants. Algal biomass produced during wastewater treatment may be further valorized in the biofuel manufacture. It is anticipated that the high microalgal lipid potential will force research towards finding effective ways to manipulate biochemical pathways involved in lipid biosynthesis and towards cost effective algal cultivation and harvesting systems, as well.