Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Aslanidi is active.

Publication


Featured researches published by George Aslanidi.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats

Stanislav Shklyaev; George Aslanidi; Michael Tennant; Victor Prima; Eric Kohlbrenner; Vadim Kroutov; Martha Campbell-Thompson; James M. Crawford; Eugene W. Shek; Philip J. Scarpace; Sergei Zolotukhin

Adiponectin (Acrp30) is a physiologically active polypeptide hormone secreted by adipose tissue that shows insulin-sensitizing, antiinflammatory, and antiatherogenic properties. In humans, Acrp30 levels are inversely related to the degree of adiposity. In the current study, we tested the long-term weight-reducing and insulin-enhancing effects of Acrp30 cDNA delivered peripherally by a viral vector. To this end, we have generated a series of recombinant adeno-associated virus vectors of serotypes 1 and 5 encoding mouse Acrp30 cDNAs. The long-term expression of recombinant adeno-associated virus-Acrp30 vectors was tested after intramuscular or intraportal injection in female Sprague–Dawley rats with diet-induced obesity. We show that a single peripheral injection of 1012 physical particles of Acrp30-encoding vectors resulted in sustained (up to 280 days) significant reduction in body weight, concomitant with the reduction in daily food intake. Acrp30 treatment resulted in higher peripheral insulin sensitivity measured by the i.p. glucose tolerance test in fasted animals. Ectopic expression of the Acrp30 transgene resulted in modulation of hepatic gluconeogenesis and lipogenesis, as demonstrated by the reduction of the expression of two key genes: PEPCK (phosphoenolpyruvate carboxykinase) and SREBP-1c (sterol regulatory element-binding protein 1c) in the liver. These data show successful peripheral therapy in a clinically relevant model for human obesity and insulin resistance.


Journal of Virology | 2007

Structure of adeno-associated virus serotype 8, a gene therapy vector.

Hyun Joo Nam; Michael Douglas Lane; Eric Padron; Brittney L. Gurda; Robert McKenna; Erik Kohlbrenner; George Aslanidi; Barry J. Byrne; Nicholas Muzyczka; Sergei Zolotukhin; Mavis Agbandje-McKenna

ABSTRACT Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-Å resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded β-barrel and long loops between the β-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.


PLOS ONE | 2013

Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors

Christine N. Kay; Renee C. Ryals; George Aslanidi; Seok Hong Min; Qing Ruan; Jingfen Sun; Frank M. Dyka; Daniel Kasuga; Andrea E. Ayala; Kim Van Vliet; Mavis Agbandje-McKenna; William W. Hauswirth; Sanford L. Boye; Shannon E. Boye

Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y) and threonine (T) residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F) and valine (V), respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice). Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS) by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary) AAV vectors containing the human rhodopsin kinase promoter (hGRK1) were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY−F+T−V) transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY−F+T−V) −hGRK1−GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus we have identified a novel AAV vector capable of transducing photoreceptors following intravitreal delivery to mouse. Furthermore, we describe a robust methodology for quantifying photoreceptor transduction from intravitreally delivered AAV vectors.


Molecular Therapy | 2010

High-efficiency Transduction and Correction of Murine Hemophilia B Using AAV2 Vectors Devoid of Multiple Surface-exposed Tyrosines

David M. Markusic; Roland W. Herzog; George Aslanidi; Brad E. Hoffman; Baozheng Li; Mengxin Li; Giridhara R. Jayandharan; Chen Ling; Irene Zolotukhin; Wenqin Ma; Sergei Zolotukhin; Arun Srivastava; Li Zhong

Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to similar titers and retained infectivity. A triple-mutant (Y444+500+730F) vector consistently had the highest level of in vivo gene transfer to murine hepatocytes, approximately threefold more efficient than the best single-mutants, and ~30-80-fold higher compared with the wild-type (WT) AAV2 capsids. Improvement of gene transfer was similar for both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors, indicating that these effects are independent of viral second-strand DNA synthesis. Furthermore, Y730F and triple-mutant vectors provided a long-term therapeutic and tolerogenic expression of human factor IX (hF.IX) in hemophilia B (HB) mice after administration of a vector dose that only results in subtherapeutic and transient expression with WT AAV2 encapsidated vectors. In summary, introduction of multiple tyrosine-mutations into the AAV2 capsid results in vectors that yield at least 30-fold improvement of transgene expression, thereby lowering the required therapeutic dose and potentially vector-related immunogenicity. Such vectors should be attractive for treatment of hemophilia and other genetic diseases.


Journal of Virology | 2012

Structural insight into the unique properties of Adeno-Associated Virus Serotype 9

Michael A. DiMattia; Hyun Joo Nam; Kim Van Vliet; Matthew Mitchell; Antonette Bennett; Brittney L. Gurda; Robert McKenna; Norman H. Olson; Robert S. Sinkovits; Mark Potter; Barry J. Byrne; George Aslanidi; Sergei Zolotukhin; Nicholas Muzyczka; Timothy S. Baker; Mavis Agbandje-McKenna

ABSTRACT Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, β-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less “pointed” than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Activation of the NF-κB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy

Giridhara R. Jayandharan; George Aslanidi; Ashley T. Martino; Stephan C. Jahn; George Q. Perrin; Roland W. Herzog; Arun Srivastava

Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.


Frontiers in Microbiology | 2011

Innate Immune Responses to AAV Vectors

Geoffrey L. Rogers; Ashley T. Martino; George Aslanidi; Giridhara R. Jayandharan; Arun Srivastava; Roland W. Herzog

Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV immunology have focused on the elimination of transgene-expressing cells by the adaptive immune system, yet the innate immune system also has a critical role, both in the initial response to the vector and in prompting a deleterious adaptive immune response. Responses to AAV vectors are primarily mediated by the TLR9–MyD88 pathway, which induces the production of pro-inflammatory cytokines by activating the NF-κB pathways and inducing type I IFN production; self-complementary AAV vectors enhance these inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene expression in cells transduced by AAV. This review highlights these recent discoveries regarding innate immune responses to AAV and discusses strategies to ablate these potentially detrimental signaling pathways.


PLOS ONE | 2013

Optimization of the capsid of recombinant adeno-associated virus 2 (AAV2) vectors: the final threshold?

George Aslanidi; Angela E. Rivers; Luis Ortiz; Liujiang Song; Chen Ling; Lakshmanan Govindasamy; Kim Van Vliet; Mengqun Tan; Mavis Agbandje-McKenna; Arun Srivastava

The ubiquitin-proteasome pathway plays a critical role in the intracellular trafficking of AAV2 vectors, and phosphorylation of certain surface-exposed amino acid residues on the capsid provides the primary signal for ubiquitination. Removal of several critical tyrosine (Y) and serine (S) residues on the AAV2 capsid has been shown to significantly increase transduction efficiency compared with the wild-type (WT) vectors. In the present study, site-directed mutagenesis of each of the 17 surface-exposed threonine (T) residues was conducted, and the transduction efficiency of four of these mutants, T455V, T491V, T550V, and T659V, was observed to increase up to 4-fold in human HEK293 cells in vitro. The most critical Y, S, and T mutations were subsequently combined, and the quadruple-mutant (Y444+500+730F+T491V) AAV2 vector was identified as the most efficient. This vector increased the transduction efficiency ∼24-fold over the WT AAV2 vector, and ∼2–3-fold over the previously described triple-mutant (Y444+500+730F) vector in a murine hepatocyte cell line, H2.35, in vitro. Similar results were obtained in murine hepatocytes in vivo following tail vein injection of the Y444+500+730F+T491V scAAV2 vector, and whole-body bioluminescence imaging of C57BL/6 mice. The increase in the transduction efficiency of the Y-T quadruple-mutant over that of the Y triple-mutant correlated with an improved nuclear translocation of the vectors, which exceeded 90%. These observations suggest that further optimization of the AAV2 capsid by targeting amino acid residues involved in phosphorylation may not be possible. This study has thus led to the generation of a novel Y444+500+730F+T491V quadruple-mutant AAV2 vector with potential for use in liver-directed human gene therapy.


Gene Therapy | 2012

Development of optimized AAV3 serotype vectors: Mechanism of high-efficiency transduction of human liver cancer cells

Binbin Cheng; Chen Ling; Yao Dai; Yuan Lu; Lyudmyla G. Glushakova; Samantha W.Y. Gee; Katherine E. McGoogan; George Aslanidi; M Park; Peter W. Stacpoole; Dietmar W. Siemann; Chen Liu; Arun Srivastava

Our recent studies have revealed that among the 10 different commonly used adeno-associated virus (AAV) serotypes, AAV3 vectors transduce human liver cancer cells extremely efficiently because these cells express high levels of human hepatocyte growth factor receptor (hHGFR), and AAV3 utilizes hHGFR as a cellular co-receptor for viral entry. In this report, we provide further evidence that both extracellular as well as intracellular kinase domains of hHGFR are involved in AAV3 vector entry and AAV3-mediated transgene expression. We also document that AAV3 vectors are targeted for degradation by the host cell proteasome machinery, and that site-directed mutagenesis of surface-exposed tyrosine (Y) to phenylalanine (F) residues on AAV3 capsids significantly improves the transduction efficiency of Y701F, Y705F and Y731F mutant AAV3 vectors. The transduction efficiency of the Y705+731F double-mutant vector is significantly higher than each of the single mutants in liver cancer cells in vitro. In immunodeficient mouse xenograft models, direct intratumoral injection of AAV3 vectors also led to high-efficiency transduction of human liver tumor cells in vivo. We also document here that the optimized tyrosine-mutant AAV3 vectors lead to increased transduction efficiency following both intratumoral and tail-vein injections in vivo. The optimized tyrosine-mutant AAV3 serotype vectors containing proapoptotic genes should prove useful for the potential gene therapy of human liver cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells

George Aslanidi; Kenneth E. Lamb; Sergei Zolotukhin

Production of clinical-grade gene therapy vectors for human trials remains a major hurdle in advancing cures for a number of otherwise incurable diseases. We describe a system based on a stably transformed insect cell lines harboring helper genes required for vector production. Integrated genes remain silent until the cell is infected with a single baculovirus expression vector (BEV). The induction of expression results from a combination of the amplification of integrated resident genes (up to 1,200 copies per cell) and the enhancement of the expression mediated by the immediate-early trans-regulator 1 (IE-1) encoded by BEV. The integration cassette incorporates an IE-1 binding target sequence from wild-type Autographa californica multiple nuclear polyhedrosis virus, a homologous region 2 (hr2). A feed-forward loop is initiated by one of the induced proteins, Rep78, boosting the amplification of the integrated genes. The system was tested for the coordinated expression of 7 proteins required to package recombinant adeno-associated virus (rAAV)2 and rAAV1. The described arrangement provided high levels of Rep and Cap proteins, thus improving rAAV yield by 10-fold as compared with the previously described baculovirus/rAAV production system.

Collaboration


Dive into the George Aslanidi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Ling

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changquan Ling

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Zifei Yin

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhong

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Wang

Second Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge