George B. Mertzios
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George B. Mertzios.
international colloquium on automata, languages and programming | 2014
George B. Mertzios; Sotiris E. Nikoletseas; Christoforos Raptopoulos; Paul G. Spirakis
We study here the problem of determining the majority type in an arbitrary connected network, each vertex of which has initially two possible types (states). The vertices may have a few additional possible states and can interact in pairs only if they share an edge. Any (population) protocol is required to stabilize in the initial majority, i.e. its output function must interpret the local state of each vertex so that each vertex outputs the initial majority type. We first provide a protocol with 4 states per vertex that always computes the initial majority value, under any fair scheduler. Under the uniform probabilistic scheduler of pairwise interactions, we prove that our protocol stabilizes in expected polynomial time for any network and is quite fast on the clique. As we prove, this protocol is optimal, in the sense that there does not exist any population protocol that always computes majority with fewer than 4 states per vertex. However this does not rule out the existence of a protocol with 3 states per vertex that is correct with high probability (whp). To this end, we examine an elegant and very natural majority protocol with 3 states per vertex, introduced in [2] where its performance has been analyzed for the clique graph. In particular, it determines the correct initial majority type in the clique very fast and whp under the uniform probabilistic scheduler. We study the performance of this protocol in arbitrary networks. We prove that, when the two initial states are put uniformly at random on the vertices, the protocol of [2] converges to the initial majority with probability higher than the probability of converging to the initial minority. In contrast, we present an infinite family of graphs, on which the protocol of [2] can fail, i.e. it can converge to the initial minority type whp, even when the difference between the initial majority and the initial minority is n − Θ(ln n). We also present another infinite family of graphs in which the protocol of [2] takes an expected exponential time to converge. These two negative results build upon a very positive result concerning the robustness of the protocol of [2] on the clique, namely that if the initial minority is at most \(\frac{n}{7}\), the protocol fails with exponentially small probability. Surprisingly, the resistance of the clique to failure causes the failure in general graphs. Our techniques use new domination and coupling arguments for suitably defined processes whose dynamics capture the antagonism between the states involved.
international colloquium on automata languages and programming | 2013
George B. Mertzios; Othon Michail; Ioannis Chatzigiannakis; Paul G. Spirakis
In this work we consider temporal networks, i.e. networks defined by a labelingλ assigning to each edge of an underlying graphG a set of discrete time-labels. The labels of an edge, which are natural numbers, indicate the discrete time moments at which the edge is available. We focus on path problems of temporal networks. In particular, we consider time-respecting paths, i.e. paths whose edges are assigned by λ a strictly increasing sequence of labels. We begin by giving two efficient algorithms for computing shortest time-respecting paths on a temporal network. We then prove that there is a natural analogue of Mengers theorem holding for arbitrary temporal networks. Finally, we propose two cost minimization parameters for temporal network design. One is the temporality of G, in which the goal is to minimize the maximum number of labels of an edge, and the other is the temporal cost of G, in which the goal is to minimize the total number of labels used. Optimization of these parameters is performed subject to some connectivity constraint. We prove several lower and upper bounds for the temporality and the temporal cost of some very basic graph families such as rings, directed acyclic graphs, and trees.
SIAM Journal on Discrete Mathematics | 2012
George B. Mertzios; Derek G. Corneil
Given a graph
mathematical foundations of computer science | 2009
Kyriaki Ioannidou; George B. Mertzios; Stavros D. Nikolopoulos
G
Measurement Science and Technology | 2009
D.A. Karras; George B. Mertzios
, the longest path problem asks to compute a simple path of
workshop on graph-theoretic concepts in computer science | 2009
George B. Mertzios; Ignasi Sau; Shmuel Zaks
G
SIAM Journal on Computing | 2011
George B. Mertzios; Ignasi Sau; Shmuel Zaks
with the largest number of vertices. This problem is the most natural optimization version of the well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs. However, in contrast to the Hamiltonian path problem, there are only a few restricted graph families, such as trees, and some small graph classes where polynomial algorithms for the longest path problem have been found. Recently it has been shown that this problem can be solved in polynomial time on interval graphs by applying dynamic programming to a characterizing ordering of the vertices of the given graph [K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos, Algorithmica, 61 (2011), pp. 320--341], thus answering an open question. In the present paper, we provide the first polynomial algorithm for the longest path problem on a much greater class, namely on cocomparability graphs. Our algorithm uses a similar, but essentially simple...
Theoretical Computer Science | 2015
George B. Mertzios; Mordechai Shalom; Ariella Voloshin; Prudence W. H. Wong; Shmuel Zaks
The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.
international parallel and distributed processing symposium | 2012
George B. Mertzios; Mordechai Shalom; Ariella Voloshin; Prudence W. H. Wong; Shmuel Zaks
A novel approach is presented in this paper for improving anisotropic diffusion PDE models, based on the Perona–Malik equation. A solution is proposed from an engineering perspective to adaptively estimate the parameters of the regularizing function in this equation. The goal of such a new adaptive diffusion scheme is to better preserve edges when the anisotropic diffusion PDE models are applied to image enhancement tasks. The proposed adaptive parameter estimation in the anisotropic diffusion PDE model involves self-organizing maps and Bayesian inference to define edge probabilities accurately. The proposed modifications attempt to capture not only simple edges but also difficult textural edges and incorporate their probability in the anisotropic diffusion model. In the context of the application of PDE models to image processing such adaptive schemes are closely related to the discrete image representation problem and the investigation of more suitable discretization algorithms using constraints derived from image processing theory. The proposed adaptive anisotropic diffusion model illustrates these concepts when it is numerically approximated by various discretization schemes in a database of magnetic resonance images (MRI), where it is shown to be efficient in image filtering and restoration applications.
international symposium on parameterized and exact computation | 2015
Archontia C. Giannopoulou; George B. Mertzios; Rolf Niedermeier
Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs, which generalizes in a natural way both interval and permutation graphs, has attracted many research efforts since their introduction in [M. C. Golumbic and C. L. Monma, Congr. Numer., 35 (1982), pp. 321-331], as it finds many important applications in constraint-based temporal reasoning, resource allocation, and scheduling problems, among others. In this article we propose the first non-trivial intersection model for general tolerance graphs, given by three-dimensional parallelepipeds, which extends the widely known intersection model of parallelograms in the plane that characterizes the class of bounded tolerance graphs. Apart from being important on its own, this new representation also enables us to improve the time complexity of three problems on tolerance graphs. Namely, we present optimal