Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George B. Richter-Addo is active.

Publication


Featured researches published by George B. Richter-Addo.


Nature Chemical Biology | 2009

Nitrate and nitrite in biology, nutrition and therapeutics

Jon O. Lundberg; Mark T. Gladwin; Amrita Ahluwalia; Nigel Benjamin; Nathan S. Bryan; Anthony R. Butler; Pedro Cabrales; Angela Fago; Martin Feelisch; Peter C. Ford; Bruce A. Freeman; Michael P. Frenneaux; Joel M. Friedman; Malte Kelm; Christopher G. Kevil; Daniel B. Kim-Shapiro; Andrey V. Kozlov; Jack R. Lancaster; David J. Lefer; Kenneth E.L. McColl; Kenneth R. McCurry; Rakesh P. Patel; Joel Petersson; Tienush Rassaf; V. P. Reutov; George B. Richter-Addo; Alan N. Schechter; Sruti Shiva; Koichiro Tsuchiya; Ernst E. van Faassen

Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.


Biochemistry | 2008

The nitrite anion binds to human hemoglobin via the uncommon O-nitrito mode.

Jun Yi; Martin K. Safo; George B. Richter-Addo

The nitrite anion is known to oxidize and degrade hemoglobin (Hb). Recent literature reports suggest a nitrite reductase activity for Hb, converting nitrite into nitric oxide. Surprisingly, no structural information about Hb-nitrite interactions has been reported. We have determined the crystal structure of the ferric Hb-nitrite complex at 1.80 A resolution. The nitrite ligand adopts the uncommon O-nitrito binding mode. In addition, the nitrito conformations in the alpha and beta subunits are different, reflecting subtle effects of the distal His in orienting the nitrite ligand in the O-nitrito binding mode.


Journal of the American Chemical Society | 2009

The distal pocket histidine residue in horse heart myoglobin directs the o-binding mode of nitrite to the heme iron.

Jun Yi; Julie Heinecke; Hui Tan; Peter C. Ford; George B. Richter-Addo

It is now well-established that mammalian heme proteins are reactive with various nitrogen oxide species and that these reactions may play significant roles in mammalian physiology. For example, the ferrous heme protein myoglobin (Mb) has been shown to reduce nitrite (NO(2)(-)) to nitric oxide (NO) under hypoxic conditions. We demonstrate here that the distal pocket histidine residue (His64) of horse heart metMb(III) (i.e., ferric Mb(III)) has marked effects on the mode of nitrite ion coordination to the iron center. X-ray crystal structures were determined for the mutant proteins metMb(III) H64V (2.0 A resolution) and its nitrite ion adduct metMb(III) H64V-nitrite (1.95 A resolution), and metMb(III) H64V/V67R (1.9 A resolution) and its nitrite ion adduct metMb(III) H64V/V67R-nitrite (2.0 A resolution). These are compared to the known structures of wild-type (wt) hh metMb(III) and its nitrite ion adduct hh metMb(III)-nitrite, which binds NO(2)(-) via an O-atom in a trans-FeONO configuration. Unlike wt metMb(III), no axial H(2)O is evident in either of the metMb(III) mutant structures. In the ferric H64V-nitrite structure, replacement of the distal His residue with Val alters the binding mode of nitrite from the nitrito (O-binding) form in the wild-type protein to a weakly bound nitro (N-binding) form. Reintroducing a H-bonding residue in the H64V/V67R double mutant restores the O-binding mode of nitrite. We have also examined the effects of these mutations on reactivities of the metMb(III)s with cysteine as a reducing agent and of the (ferrous) Mb(II)s with nitrite ion under anaerobic conditions. The Mb(II)s were generated by reduction of the Mb(III) precursors in a second-order reaction with cysteine, the rate constants for this step following the order H64V/V67R > H64V >> wt. The rate constants for the oxidation of the Mb(II)s by nitrite (giving NO as the other product) follow the order wt > H64V/V67R >> H64V and suggest a significant role of the distal pocket H-bonding residue in nitrite reduction.


Inorganic Chemistry | 2010

Linkage isomerization in heme-NOx compounds: understanding NO, nitrite, and hyponitrite interactions with iron porphyrins.

Nan Xu; Jun Yi; George B. Richter-Addo

Nitric oxide (NO) and its derivatives such as nitrite and hyponitrite are biologically important species of relevance to human health. Much of their physiological relevance stems from their interactions with the iron centers in heme proteins. The chemical reactivities displayed by the heme-NOx species (NOx = NO, nitrite, hyponitrite) are a function of the binding modes of the NOx ligands. Hence, an understanding of the types of binding modes extant in heme-NOx compounds is important if we are to unravel the inherent chemical properties of these NOx metabolites. In this Forum Article, the experimentally characterized linkage isomers of heme-NOx models and proteins are presented and reviewed. Nitrosyl linkage isomers of synthetic iron and ruthenium porphyrins have been generated by photolysis at low temperatures and characterized by spectroscopy and density functional theory calculations. Nitrite linkage isomers in synthetic metalloporphyrin derivatives have been generated from photolysis experiments and in low-temperature matrices. In the case of nitrite adducts of heme proteins, both N and O binding have been determined crystallographically, and the role of the distal H-bonding residue in myoglobin in directing the O-binding mode of nitrite has been explored using mutagenesis. To date, only one synthetic metalloporphyrin complex containing a hyponitrite ligand (displaying an O-binding mode) has been characterized by crystallography. This is contrasted with other hyponitrite binding modes experimentally determined for coordination compounds and computationally for NO reductase enzymes. Although linkage isomerism in heme-NOx derivatives is still in its infancy, opportunities now exist for a detailed exploration of the existence and stabilities of the metastable states in both heme models and heme proteins.


Biochemistry | 2010

Synchrotron X-ray-Induced Photoreduction of Ferric Myoglobin Nitrite Crystals Gives the Ferrous Derivative with Retention of the O-Bonded Nitrite Ligand.

Jun Yi; Allen M. Orville; John M. Skinner; Michael J. Skinner; George B. Richter-Addo

Exposure of a single crystal of the nitrite adduct of ferric myoglobin (Mb) at 100 K to high-intensity synchrotron X-ray radiation resulted in changes in the UV-vis spectrum that can be attributed to reduction of the ferric compound to the ferrous derivative. We employed correlated single-crystal spectroscopy with crystallography to further characterize this photoproduct. The 1.55 A resolution crystal structure of the photoproduct reveals retention of the O-binding mode for binding of nitrite to the iron center. The data are consistent with cryogenic generation and trapping, at 100 K, of a ferrous d(6) Mb(II)(ONO)* complex by photoreduction of the ferric precursor crystals using high-intensity X-ray radiation.


Journal of the American Chemical Society | 2009

A Stable Hyponitrite-Bridged Iron Porphyrin Complex

Nan Xu; Adam L. O. Campbell; Douglas R. Powell; Jana Khandogin; George B. Richter-Addo

The coupling of two nitric oxide (NO) molecules in heme active sites is an important contributor to the conversion of NO to nitrous oxide (N(2)O) by heme-containing enzymes. Several formulations for the presumed heme-Fe{N(2)O(2)}(n-) intermediates have been proposed previously, however, no crystal structures of heme-Fe{N(2)O(2)}(n-) systems have been reported to date. We report the first isolation and characterization of a stable bimetallic hyponitrite iron porphyrin, [(OEP)Fe](2)(mu-N(2)O(2)), prepared from the reaction of [(OEP)Fe](2)(mu-O) with hyponitrous acid. Density functional theoretical calculations were performed on the model compound [(porphine)Fe](2)(mu-N(2)O(2)) to characterize its electronic structure and properties.


Proteins | 2003

Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane.

Daniel M. Copeland; Ann H. West; George B. Richter-Addo

The interactions of nitric oxide (NO) and organic nitroso compounds with heme proteins are biologically important, and adduct formation between NO‐containing compounds and myoglobin (Mb) have served as prototypical systems for studies of these interactions. We have prepared crystals of horse heart (hh) MbNO from nitrosylation of aqua‐metMb crystals, and we have determined the crystal structure of hh MbNO at a resolution of 1.9 Å. The Fe‐N‐O angle of 147° in hh MbNO is larger than the corresponding 112° angle previously determined from the crystal structure of sperm whale MbNO (Brucker et al., Proteins 1998;30:352–356) but is similar to the 150° angle determined from a MS XAFS study of a frozen solution of hh MbNO (Rich et al., J Am Chem Soc 1998;120:10827–10836). The Fe‐N(O) bond length of 2.0 Å (this work) is longer than the 1.75 Å distance determined from the XAFS study and suggests distal pocket influences on FeNO geometry. The nitrosyl N atom is located 3.0 Å from the imidazole Nϵ atom of the distal His64 residue, suggesting electrostatic stabilization of the FeNO moiety by His64. The crystal structure of the nitrosoethane adduct of ferrous hh Mb was determined at a resolution of 1.7 Å. The nitroso O atom of the EtNO ligand is located 2.7 Å from the imidazole Nϵ atom of His64, suggesting a hydrogen bond interaction between these groups. To the best of our knowledge, the crystal structure of hh Mb(EtNO) is the first such determination of a nitrosoalkane adduct of a heme protein. Proteins 2003.


Inorganic Chemistry | 2010

Nuclear resonance vibrational spectroscopy applied to [Fe(OEP)(NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure.

Nicolai Lehnert; Mary Grace I. Galinato; Florian Paulat; George B. Richter-Addo; Wolfgang Sturhahn; Nan Xu; Jiyong Zhao

This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N-O bonds are 2.83-2.94 (based on the DFT functional applied) and about 12.15 mdyn/A, respectively. The electronic structures of 5C ferrous heme-nitrosyls in different model complexes are then analyzed, and variations in their properties based on different porphyrin substituents are explained. Finally, the shortcomings of different DFT functionals in describing the axial FeNO subunit in heme-nitrosyls are elucidated.


Inorganic Chemistry | 2014

Characterization of the Bridged Hyponitrite Complex {[Fe(OEP)]2(μ-N2O2)}: Reactivity of Hyponitrite Complexes and Biological Relevance

Timothy C. Berto; Nan Xu; Se Ryeon Lee; Anne J. McNeil; E. Ercan Alp; Jiyong Zhao; George B. Richter-Addo; Nicolai Lehnert

The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) represents a paradigm of how NO can be detoxified anaerobically in cells. In order to elucidate the mechanism of this enzyme, model complexes provide a convenient means to assess potential reaction intermediates. In particular, there have been many proposed mechanisms that invoke the formation of a hyponitrite bridge between the heme b3 and nonheme iron (FeB) centers within the NorBC active site. However, the reactivity of bridged iron hyponitrite complexes has not been investigated much in the literature. The model complex {[Fe(OEP)]2(μ-N2O2)} offers a unique opportunity to study the electronic structure and reactivity of such a hyponitrite-bridged complex. Here we report the detailed characterization of {[Fe(OEP)]2(μ-N2O2)} using a combination of IR, nuclear resonance vibrational spectroscopy, electron paramagnetic resonance, and magnetic circular dichroism spectroscopy along with SQUID magnetometry. These results show that the ground-state electronic structure of this complex is best described as having two intermediate-spin (S = (3)/2) iron centers that are weakly antiferromagnetically coupled across the N2O2(2-) bridge. The analogous complex {[Fe(PPDME)]2(μ-N2O2)} shows overall similar properties. Finally, we report the unexpected reaction of {[Fe(OEP)]2(μ-N2O2)} in the presence and absence of 1-methylimidizole to yield [Fe(OEP)(NO)]. Density functional theory calculations are used to rationalize why {[Fe(OEP)]2(μ-N2O2)} cannot be formed directly by dimerization of [Fe(OEP)(NO)] and why only the reverse reaction is observed experimentally. These results thus provide insight into the general reactivity of hyponitrite-bridged iron complexes with general relevance for the N-N bond-forming step in NorBC.


Journal of Inorganic Biochemistry | 2012

Nitrite reduction by CoII and MnII substituted myoglobins: Towards understanding necessary components of Mb nitrite reductase activity

Julie Heinecke; Jun Yi; Jose Clayston Melo Pereira; George B. Richter-Addo; Peter C. Ford

Nitrite reduction to nitric oxide by heme proteins is drawing increasing attention as a protective mechanism to hypoxic injury in mammalian physiology. Here we probe the nitrite reductase (NiR) activities of manganese(II)- and cobalt(II)-substituted myoglobins, and compare with data obtained previously for the iron(II) analog wt Mb(II). Both Mn(II)Mb and Co(II)Mb displayed NiR activity, and it was shown that the kinetics are first order each in [protein], [nitrite], and [H(+)], as previously determined for the Fe(II) analog wt Mb(II). The second order rate constants (k(2)) at pH 7.4 and T=25 °C, were 0.0066 and 0.015 M(-1)s(-1) for Co(II)Mb and Mn(II)Mb, respectively, both orders of magnitude slower than the k(2) (6M(-1)s(-1)) for wt Mb(II). The final reaction products for Mn(II)Mb consisted of a mixture of the nitrosyl Mn(II)Mb(NO) and Mn(III)Mb, similar to the products from the analogous NiR reaction by wt Mb. In contrast, the products of NiR by Co(II)Mb were found to be the nitrito complex Co(III)Mb(ONO(-)) plus roughly an equivalent of free NO. The differences can be attributed in part to the stronger coordination of inorganic nitrite to Co(III)Mb as reflected in the respective M(III)Mb(ONO(-)) formation constants K(nitrite): 2100 M(-1) (Co(III)) and <~0.4M(-1) (Mn(III)). We also report the formation constants (3.7 and 30 M(-1), respectively) for the nitrite complexes of the mutant metmyoglobins H64V Mb(III)(NO(2)(-)) and H64V/V67R Mb(III)(ONO(-)) and a K(nitrite) revised value (120 M(-1)) for the nitrite complex of wt metMb. The respective K(nitrite) values for the three ferric proteins emphasize the importance of a H-bonding residue, such as His64 in the Mb(III) distal pocket or the Arg67 in H64V/V67R Mb(III), in stabilizing nitrite coordination. Notably, the NiR activities of the corresponding ferrous Mbs follow a similar sequence suggesting that nitrite binding to these centers are analogously affected by the H-bonding residues.

Collaboration


Dive into the George B. Richter-Addo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Xu

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yi

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Chen

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Shaw

Southern Illinois University Edwardsville

View shared research outputs
Researchain Logo
Decentralizing Knowledge