George C. Gabriel
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George C. Gabriel.
Nature | 2015
You Li; Nikolai T. Klena; George C. Gabriel; Xiaoqin Liu; Andrew J. Kim; Kristi Lemke; Yu Chen; Bishwanath Chatterjee; William A. Devine; Rama Rao Damerla; Chienfu Chang; Hisato Yagi; Jovenal T. San Agustin; Mohamed Thahir; Shane Anderton; Caroline Lawhead; Anita Vescovi; C. Herbert Pratt; Judy Morgan; Leslie Haynes; Cynthia L. Smith; Janan T. Eppig; Laura G. Reinholdt; Richard Francis; Linda Leatherbury; Madhavi Ganapathiraju; Kimimasa Tobita; Gregory J. Pazour; Cecilia W. Lo
Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.
Nature Genetics | 2013
Aarti Tarkar; Niki T. Loges; Christopher E. Slagle; Richard Francis; Gerard W. Dougherty; Joel V. Tamayo; Brett A. Shook; Marie E. Cantino; D. A. Schwartz; Charlotte Jahnke; Heike Olbrich; Claudius Werner; Johanna Raidt; Petra Pennekamp; Marouan Abouhamed; Rim Hjeij; Gabriele Köhler; Matthias Griese; You Li; Kristi Lemke; Nikolas Klena; Xiaoqin Liu; George C. Gabriel; Kimimasa Tobita; Martine Jaspers; Lucy Morgan; Adam J. Shapiro; Stef J.F. Letteboer; Dorus A. Mans; Johnny L. Carson
DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
American Journal of Human Genetics | 2014
Rim Hjeij; A. Onoufriadis; Christopher M. Watson; C.E. Slagle; N.T. Klena; Gerard W. Dougherty; M. Kurkowiak; Niki T. Loges; Christine P. Diggle; N.F. Morante; George C. Gabriel; Kristi Lemke; You Li; Petra Pennekamp; Tabea Menchen; F. Konert; June K. Marthin; Dorus A. Mans; Stef J.F. Letteboer; Claudius Werner; Thomas Burgoyne; C. Westermann; Andrew Rutman; Ian M. Carr; C. O'Callaghan; Eduardo Moya; Eddie M. K. Chung; Eamonn Sheridan; Kim G. Nielsen; Ronald Roepman
A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families whose cilia showed a complete loss of ODAs and severely impaired ciliary beating. Consistent with the laterality defects observed in these individuals, we found Ccdc151 expressed in vertebrate left-right organizers. Homozygous zebrafish ccdc151ts272a and mouse Ccdc151Snbl mutants display a spectrum of situs defects associated with complex heart defects. We demonstrate that CCDC151 encodes an axonemal coiled coil protein, mutations in which abolish assembly of CCDC151 into respiratory cilia and cause a failure in axonemal assembly of the ODA component DNAH5 and the ODA-DC-associated components CCDC114 and ARMC4. CCDC151-deficient zebrafish, planaria, and mice also display ciliary dysmotility accompanied by ODA loss. Furthermore, CCDC151 coimmunoprecipitates CCDC114 and thus appears to be a highly evolutionarily conserved ODA-DC-related protein involved in mediating assembly of both ODAs and their axonemal docking machinery onto ciliary microtubules.
Nature Genetics | 2015
Nadia A. Akawi; Jeremy McRae; Morad Ansari; Meena Balasubramanian; Moira Blyth; Angela F. Brady; Stephen Clayton; Trevor Cole; Charu Deshpande; Tomas Fitzgerald; Nicola Foulds; Richard Francis; George C. Gabriel; Sebastian S. Gerety; Judith A. Goodship; Emma Hobson; Wendy D Jones; Shelagh Joss; Daniel A. King; Nikolai T. Klena; Ajith Kumar; Melissa Lees; Chris Lelliott; Jenny Lord; Dominic McMullan; Mary O'Regan; Deborah Osio; Virginia Piombo; Elena Prigmore; Diana Rajan
Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes.
Nature Genetics | 2015
Anne Guimier; George C. Gabriel; Fanny Bajolle; Michael Tsang; Hui Liu; Aaron Noll; Molly Schwartz; Rajae El Malti; Laurie Smith; Nikolai T. Klena; Gina Jimenez; Neil A. Miller; Myriam Oufadem; Anne Moreau de Bellaing; Hisato Yagi; Carol J. Saunders; Candice N. Baker; Sylvie Di Filippo; Kevin A. Peterson; Isabelle Thiffault; Christine Bole-Feysot; Linda D. Cooley; Emily Farrow; Cécile Masson; Patric Schoen; Jean-François Deleuze; Patrick Nitschké; Stanislas Lyonnet; Loïc de Pontual; Stephen A. Murray
Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole-exome sequencing, whole-genome sequencing and high-throughput cohort resequencing, we identified recessive mutations in MMP21 (encoding matrix metallopeptidase 21) in nine index cases with heterotaxy. In addition, Mmp21-mutant mice and mmp21-morphant zebrafish displayed heterotaxy and abnormal cardiac looping, respectively, suggesting a new role for extracellular matrix remodeling in the establishment of laterality in vertebrates.
Annals of the American Thoracic Society | 2014
Andrea S. Garrod; Maliha Zahid; Xin Tian; Richard Francis; Omar Khalifa; William A. Devine; George C. Gabriel; Linda Leatherbury; Cecilia W. Lo
RATIONALE Patients with congenital heart disease with heterotaxy exhibit a high prevalence of abnormal airway ciliary motion and low nasal nitric oxide, characteristics associated with primary ciliary dyskinesia, a reflection of the role of motile cilia in airway clearance and left-right patterning. OBJECTIVES To assess the potential broader clinical significance of airway ciliary dysfunction in congenital heart disease, we assessed the prevalence of ciliary dysfunction versus respiratory symptoms in patients with congenital heart disease with or without heterotaxy. METHODS Patients with a broad spectrum of congenital heart disease were recruited (n = 218), 39 with heterotaxy. Nasal nitric oxide measurements and nasal biopsies for ciliary motion video microscopy were conducted. Sinopulmonary symptoms were reviewed by questionnaire. MEASUREMENTS AND MAIN RESULTS A high prevalence of ciliary motion defects (51.8%) and low or borderline low nasal nitric oxide levels (35.5%) were observed in patients with congenital heart disease with or without heterotaxy. Patients with ciliary motion defects or low nasal nitric oxide showed increased sinopulmonary symptoms, with most respiratory symptoms seen in those with both abnormal ciliary motion and low nitric oxide. Multivariate analysis showed that abnormal ciliary motion and low nasal nitric oxide were more important in determining risk of sinopulmonary symptoms than heterotaxy status. CONCLUSIONS Patients with congenital heart disease without heterotaxy exhibit a high prevalence of abnormal ciliary motion and low nasal nitric oxide. This was associated with more sinopulmonary symptoms. These findings suggest that patients with a broad spectrum of congenital heart disease and respiratory symptoms may benefit from screening for ciliary dysfunction and implementation of medical interventions to reduce sinopulmonary morbidities.
Nature Genetics | 2017
Xiaoqin Liu; Hisato Yagi; Shazina Saeed; Abha S Bais; George C. Gabriel; Zhaohan Chen; Kevin A. Peterson; You Li; Molly Schwartz; William Reynolds; Brian Gibbs; Yijen Wu; William A. Devine; Bishwanath Chatterjee; Nikolai T. Klena; Dennis Kostka; Karen L. de Mesy Bentley; Madhavi Ganapathiraju; Phillip Dexheimer; Linda Leatherbury; Omar Khalifa; Anchit Bhagat; Maliha Zahid; William T. Pu; Simon C. Watkins; Paul Grossfeld; Stephen A. Murray; George A. Porter; Michael Tsang; Lisa J. Martin
Congenital heart disease (CHD) affects up to 1% of live births. Although a genetic etiology is indicated by an increased recurrence risk, sporadic occurrence suggests that CHD genetics is complex. Here, we show that hypoplastic left heart syndrome (HLHS), a severe CHD, is multigenic and genetically heterogeneous. Using mouse forward genetics, we report what is, to our knowledge, the first isolation of HLHS mutant mice and identification of genes causing HLHS. Mutations from seven HLHS mouse lines showed multigenic enrichment in ten human chromosome regions linked to HLHS. Mutations in Sap130 and Pcdha9, genes not previously associated with CHD, were validated by CRISPR–Cas9 genome editing in mice as being digenic causes of HLHS. We also identified one subject with HLHS with SAP130 and PCDHA13 mutations. Mouse and zebrafish modeling showed that Sap130 mediates left ventricular hypoplasia, whereas Pcdha9 increases penetrance of aortic valve abnormalities, both signature HLHS defects. These findings show that HLHS can arise genetically in a combinatorial fashion, thus providing a new paradigm for the complex genetics of CHD.
American Journal of Medical Genetics Part A | 2015
You Li; Andrea S. Garrod; Suneeta Madan-Khetarpal; Gayathri Sreedher; Marianne McGuire; Hisato Yagi; Nikolai T. Klena; George C. Gabriel; Omar Khalifa; Maliha Zahid; Ashok Panigrahy; Daniel J. Weiner; Cecilia W. Lo
Ciliopathies such as cranioectodermal dysplasia, Sensenbrenner syndrome, short‐rib polydactyly, and Jeune syndrome are associated with respiratory complications arising from rib cage dysplasia. While such ciliopathies have been demonstrated to involve primary cilia defects, we show motile cilia dysfunction in the airway of a patient diagnosed with cranioectodermal dysplasia. While this patient had mild thoracic dystrophy not requiring surgical treatment, there was nevertheless newborn respiratory distress, restrictive airway disease with possible obstructive airway involvement, repeated respiratory infections, and atelectasis. High‐resolution videomicroscopy of nasal epithelial biopsy showed immotile/dyskinetic cilia and nasal nitric oxide was reduced, both of which are characteristics of primary ciliary dyskinesia, a sinopulmonary disease associated with mucociliary clearance defects due to motile cilia dysfunction in the airway. Exome sequencing analysis of this patient identified compound heterozygous mutations in WDR35, but no mutations in any of the 30 known primary ciliary dyskinesia genes or other cilia‐related genes. Given that WDR35 is only known to be required for primary cilia function, we carried out WDR35 siRNA knockdown in human respiratory epithelia to assess the role of WDR35 in motile cilia function. This showed WDR35 deficiency disrupted ciliogenesis in the airway, indicating WDR35 is also required for formation of motile cilia. Together, these findings suggest patients with WDR35 mutations have an airway mucociliary clearance defect masked by their restrictive airway disease.
Circulation-cardiovascular Imaging | 2013
Andrew J. Kim; Richard Francis; Xiaoqin Liu; William A. Devine; Ricardo Ramirez; Shane Anderton; Li Yin Wong; Fahim Faruque; George C. Gabriel; Linda Leatherbury; Kimimasa Tobita; Cecilia W. Lo
Background—Mice are well suited for modeling human congenital heart disease (CHD), given their 4-chamber cardiac anatomy. However, mice with CHD invariably die prenatally/neonatally, causing CHD phenotypes to be missed. Therefore, we investigated the efficacy of noninvasive microcomputed tomography (micro-CT) to screen for CHD in stillborn/fetal mice. These studies were performed using chemically mutagenized mice expected to be enriched for birth defects, including CHD. Methods and Results—Stillborn/fetal mice obtained from the breeding of N-ethyl-N-nitrosourea mutagenized mice were formalin-fixed and stained with iodine, then micro-CT scanned. Those diagnosed with CHD and some CHD-negative pups were necropsied. A subset of these were further analyzed by histopathology to confirm the CHD/no-CHD diagnosis. Micro-CT scanning of 2105 fetal/newborn mice revealed an abundance of ventricular septal defects (n=307). Overall, we observed an accuracy of 89.8% for ventricular septal defect diagnosis. Outflow tract anomalies identified by micro-CT included double outlet right ventricle (n=36), transposition of the great arteries (n=14), and persistent truncus arteriosus (n=3). These were diagnosed with a 97.4% accuracy. Aortic arch anomalies also were readily detected with an overall 99.6% accuracy. This included right aortic arch (n=28) and coarctation/interrupted aortic arch (n=12). Also detected by micro-CT were atrioventricular septal defects (n=22), tricuspid hypoplasia/atresia (n=13), and coronary artery fistulas (n=16). They yielded accuracies of 98.9%, 100%, and 97.8%, respectively. Conclusions—Contrast enhanced micro-CT imaging in neonatal/fetal mice can reliably detect a wide spectrum of CHD. We conclude that micro-CT imaging can be used for routine rapid assessments of structural heart defects in fetal/newborn mice.
Nature Communications | 2015
Peter G. Czarnecki; George C. Gabriel; Danielle K. Manning; Mikhail Sergeev; Kristi Lemke; Nikolai T. Klena; Xiaoqin Liu; Yu Chen; You Li; Jovenal T. San Agustin; Maija Garnaas; Richard Francis; Kimimasa Tobita; Wolfram Goessling; Gregory J. Pazour; Cecilia W. Lo; David R. Beier; Jagesh V. Shah
The ciliary kinase NEK8 plays a critical role in situs determination and cystic kidney disease, yet its exact function remains unknown. In this study we identify ANKS6 as a target and activator of NEK8. ANKS6 requires NEK8 for localizing to the ciliary inversin compartment (IC) and activates NEK8 by binding to its kinase domain. Here we demonstrate the functional importance of this interaction through the analysis of two novel mouse mutations, Anks6Streaker and Nek8Roc. Both display heterotaxy, cardiopulmonary malformations and cystic kidneys, a syndrome also characteristic of mutations in Invs and Nphp3, the other known components of the IC. The Anks6Strkr mutation decreases ANKS6 interaction with NEK8, precluding NEK8 activation. The Nek8Roc mutation inactivates NEK8 kinase function while preserving ANKS6 localization to the IC. Together, these data reveal the crucial role of NEK8 kinase activation within the IC, promoting proper left-right patterning, cardiopulmonary development and renal morphogenesis.