Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George D. Weiblen is active.

Publication


Featured researches published by George D. Weiblen.


Nature | 2002

Low host specificity of herbivorous insects in a tropical forest

Vojtech Novotny; Yves Basset; Scott E. Miller; George D. Weiblen; Birgitta Bremer; Lukas Cizek; Pavel Drozd

Two decades of research have not established whether tropical insect herbivores are dominated by specialists or generalists. This impedes our understanding of species coexistence in diverse rainforest communities. Host specificity and species richness of tropical insects are also key parameters in mapping global patterns of biodiversity. Here we analyse data for over 900 herbivorous species feeding on 51 plant species in New Guinea and show that most herbivorous species feed on several closely related plant species. Because species-rich genera are dominant in tropical floras, monophagous herbivores are probably rare in tropical forests. Furthermore, even between phylogenetically distant hosts, herbivore communities typically shared a third of their species. These results do not support the classical view that the coexistence of herbivorous species in the tropics is a consequence of finely divided plant resources; non-equilibrium models of tropical diversity should instead be considered. Low host specificity of tropical herbivores reduces global estimates of arthropod diversity from 31 million (ref. 1) to 4–6 million species. This finding agrees with estimates based on taxonomic collections, reconciling an order of magnitude discrepancy between extrapolations of global diversity based on ecological samples of tropical communities with those based on sampling regional faunas.


Science | 2006

Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests

Vojtech Novotny; Pavel Drozd; Scott E. Miller; Miroslav Kulfan; Milan Janda; Yves Basset; George D. Weiblen

Despite recent progress in understanding mechanisms of tree species coexistence in tropical forests, a simple explanation for the even more extensive diversity of insects feeding on these plants has been missing. We compared folivorous insects from temperate and tropical trees to test the hypothesis that herbivore species coexistence in more diverse communities could reflect narrow host specificity relative to less diverse communities. Temperate and tropical tree species of comparable phylogenetic distribution supported similar numbers of folivorous insect species, 29.0 ± 2.2 and 23.5 ± 1.8 per 100 square meters of foliage, respectively. Host specificity did not differ significantly between community samples, indicating that food resources are not more finely partitioned among folivorous insects in tropical than in temperate forests. These findings suggest that the latitudinal gradient in insect species richness could be a direct function of plant diversity, which increased sevenfold from our temperate to tropical study sites.


Nature | 2007

Low beta diversity of herbivorous insects in tropical forests.

Vojtech Novotny; Scott E. Miller; Jiri Hulcr; Richard Arthur Ian Drew; Yves Basset; Milan Janda; Gregory P. Setliff; Karolyn Darrow; Alan J. A. Stewart; John Auga; Brus Isua; Kenneth Molem; Markus Manumbor; Elvis Tamtiai; Martin Mogia; George D. Weiblen

Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik–Ramu region of New Guinea studied here.


Plant Physiology | 1996

Root Carbon Dioxide Fixation by Phosphorus-Deficient Lupinus albus (Contribution to Organic Acid Exudation by Proteoid Roots)

Jane F. Johnson; Deborah L. Allan; Carroll P. Vance; George D. Weiblen

When white lupin (Lupinus albus L.) is subjected to P deficiency lateral root development is altered and densely clustered, tertiary lateral roots (proteoid roots) are initiated. These proteoid roots exude large amounts of citrate, which increases P solubilization. In the current study plants were grown with either 1 mM P (+P-treated) or without P (-P-treated). Shoots or roots of intact plants from both P treatments were labeled independently with 14CO2 to compare the relative contribution of C fixed in each with the C exuded from roots as citrate and other organic acids. About 25-fold more acid-stable 14C, primarily in citrate and malate, was recovered in exudates from the roots of -P-treated plants compared with +P-treated plants. The rate of in vivo C fixation in roots was about 4-fold higher in -P-treated plants than in +P-treated plants. Evidence from labeling intact shoots or roots indicates that synthesis of citrate exuded by -P-treated roots is directly related to nonphotosynthetic C fixation in roots. C fixed in roots of -P-treated plants contributed about 25 and 34% of the C exuded as citrate and malate, respectively. Nonphotosynthetic C fixation in white lupin roots is an integral component in the exudation of large amounts of citrate and malate, thus increasing the P available to the plant.


Journal of Animal Ecology | 2010

Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest

Vojtech Novotny; Scott E. Miller; Leontine Baje; Solomon Balagawi; Yves Basset; Lukas Cizek; Kathleen J. Craft; Francesca Dem; Richard Arthur Ian Drew; Jiri Hulcr; Jan Lepš; Owen T. Lewis; Rapo Pokon; Alan J. A. Stewart; G. Allan Samuelson; George D. Weiblen

1. The extent to which plant-herbivore feeding interactions are specialized is key to understand the processes maintaining the diversity of both tropical forest plants and their insect herbivores. However, studies documenting the full complexity of tropical plant-herbivore food webs are lacking. 2. We describe a complex, species-rich plant-herbivore food web for lowland rain forest in Papua New Guinea, resolving 6818 feeding links between 224 plant species and 1490 herbivore species drawn from 11 distinct feeding guilds. By standardizing sampling intensity and the phylogenetic diversity of focal plants, we are able to make the first rigorous and unbiased comparisons of specificity patterns across feeding guilds. 3. Specificity was highly variable among guilds, spanning almost the full range of theoretically possible values from extreme trophic generalization to monophagy. 4. We identify guilds of herbivores that are most likely to influence the composition of tropical forest vegetation through density-dependent herbivory or apparent competition. 5. We calculate that 251 herbivore species (48 of them unique) are associated with each rain forest tree species in our study site so that the ∼200 tree species coexisting in the lowland rain forest community are involved in ∼50,000 trophic interactions with ∼9600 herbivore species of insects. This is the first estimate of total herbivore and interaction number in a rain forest plant-herbivore food web. 6. A comprehensive classification of insect herbivores into 24 guilds is proposed, providing a framework for comparative analyses across ecosystems and geographical regions.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

60 Million years of co-divergence in the fig-wasp symbiosis

Nina Rønsted; George D. Weiblen; James M. Cook; Nicolas Salamin; Carlos A. Machado; Vincent Savolainen

Figs (Ficus; ca 750 species) and fig wasps (Agaoninae) are obligate mutualists: all figs are pollinated by agaonines that feed exclusively on figs. This extraordinary symbiosis is the most extreme example of specialization in a plant–pollinator interaction and has fuelled much speculation about co-divergence. The hypothesis that pollinator specialization led to the parallel diversification of fig and pollinator lineages (co-divergence) has so far not been tested due to the lack of robust and comprehensive phylogenetic hypotheses for both partners. We produced and combined the most comprehensive molecular phylogenetic trees to date with fossil data to generate independent age estimates for fig and pollinator lineages, using both non-parametric rate smoothing and penalized likelihood dating methods. Molecular dating of ten pairs of interacting lineages provides an unparalleled example of plant–insect co-divergence over a geological time frame spanning at least 60 million years.


Systematic Biology | 2012

An Extreme Case of Plant-Insect Codiversification: Figs and Fig-Pollinating Wasps

Astrid Cruaud; Nina Rønsted; Bhanumas Chantarasuwan; Lien-Siang Chou; Wendy L. Clement; Arnaud Couloux; Benjamin R. Cousins; Gwenaëlle Genson; Rhett D. Harrison; Paul Hanson; Martine Hossaert-McKey; Roula Jabbour-Zahab; Emmanuelle Jousselin; Carole Kerdelhué; Finn Kjellberg; Carlos Lopez-Vaamonde; John Peebles; Yan-Qiong Peng; Rodrigo Augusto Santinelo Pereira; Tselil Schramm; Rosichon Ubaidillah; Simon van Noort; George D. Weiblen; Da Rong Yang; Anak Yodpinyanee; Ran Libeskind-Hadas; James M. Cook; Jean Yves Rasplus; Vincent Savolainen

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification. [Biogeography; coevolution; cospeciation; host switching; long-branch attraction; phylogeny.].


Ecology | 2006

phylogenetic dispersion of host use in a tropical insect herbivore community

George D. Weiblen; Campbell O. Webb; Vojtech Novotny; Yves Basset; Scott E. Miller

Theory has long predicted that insect community structure should be related to host plant phylogeny. We examined the distribution of insect herbivore associations with respect to host plant phylogeny for caterpillars (Lepidoptera), beetles (Coleoptera), and grasshoppers and relatives (orthopteroids) in a New Guinea rain forest. We collected herbivores from three lineages of closely related woody plants and from more distantly related plant lineages in the same locality to examine the phylogenetic scale at which host specificity can be detected in a community sample. By grafting molecular phylogenies inferred from three different genes into a supertree, we developed a phylogenetic hypothesis for the host community. Feeding experiments were performed on more than 100 000 live insects collected from the 62 host species. We examined patterns of host use with respect to the host plant phylogeny. As predicted, we found a negative relationship between faunal similarity, defined as the proportion of all herbivores feeding on two hosts that are shared between the hosts, and the phylogenetic distance between hosts based on DNA sequence divergence. Host phylogenetic distance explained a significant fraction of the variance (25%) in herbivore community similarity, in spite of the many ecological factors that probably influence feeding patterns. Herbivore community similarity among congeneric hosts was high (50% on average) compared to overlap among host families (20-30% on average). We confirmed this pattern using the nearest taxon index (NTI) and net relatedness index (NRI) to quantify the extent of phylogenetic clustering in particular herbivore associations and to test whether patterns are significantly different from chance expectations. We found that 40% of caterpillar species showed significant phylogenetic clustering with respect to host plant associations, somewhat more so than for beetles or orthopteroids. We interpret this as evidence that a substantial fraction of tropical forest insect herbivores are clade specialists.


Molecular Ecology | 2002

Speciation in fig pollinators and parasites.

George D. Weiblen; Guy L. Bush

Here we draw on phylogenies of figs and fig wasps to suggest how modes of speciation may be affected by interspecific interactions. Mutualists appear to have cospeciated with their hosts to a greater extent than parasites, which showed evidence of host shifting. However, we also repeatedly encountered a pattern not explained by either cospeciation or host switching. Sister species of fig parasites often attack the same host in sympatry, and differences in ovipositor length suggest that parasite speciation could result from divergence in the timing of oviposition with respect to fig development. These observations on fig parasites are consistent with a neglected model of sympatric speciation.


American Journal of Botany | 2000

Phylogenetic relationships of functionally dioecious FICUS (Moraceae) based on ribosomal DNA sequences and morphology

George D. Weiblen

Figs (Ficus, Moraceae) are either monoecious or gynodioecious depending on the arrangement of unisexual florets within the specialized inflorescence or syconium. The gynodioecious species are functionally dioecious due to the impact of pollinating fig wasps (Hymenoptera: Agaonidae) on the maturation of fig seeds. The evolutionary relationships of functionally dioecious figs (Ficus subg. Ficus) were examined through phylogenetic analyses based on the internal transcribed spacer (ITS) region of nuclear ribosomal DNA and morphology. Forty-six species representing each monoecious subgenus and each section of functionally dioecious subg. Ficus were included in parsimony analyses based on 180 molecular characters and 61 morphological characters that were potentially informative. Separate and combined analyses of molecular and morphological data sets suggested that functionally dioecious figs are not monophyletic and that monoecious subg. Sycomorus is derived within a dioecious clade. The combined analysis indicated one or two origins of functional dioecy in the genus and at least two reversals to monoecy within a functionally dioecious lineage. The exclusion of breeding system and related characters from the analysis also indicated two shifts from monoecy to functional dioecy and two reversals. The associations of pollinating fig wasps were congruent with host fig phylogeny and further supported a revised classification of Ficus.

Collaboration


Dive into the George D. Weiblen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Basset

International Institute of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Milan Janda

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brus Isua

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge