Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George F. Babcock is active.

Publication


Featured researches published by George F. Babcock.


Annals of Surgery | 1990

The process of microbial translocation

J. Wesley Alexander; Steven T. Boyce; George F. Babcock; Luca Gianotti; Michael D. Peck; David L. Dunn; Tonyia Pyles; Charles P. Childress; Sara K. Ash

The process of microbial translocation was studied using Candida albicans, Escherichia coli, or endotoxin instilled into Thiry-Vella loops of thermally injured guinea pigs and rats. Translocation of C. albicans occurred by direct penetration of enterocytes by a unique process different from classical phagocytosis. Translocation between enterocytes was not observed. Internalization was associated with a disturbance of the plasma membrane and brush border, but most internalized organisms were not surrounded by a plasma membrane. Passage of the candida into the lamina propria appeared to be associated with disruption of the basal membrane with extrusion of cytoplasm of the cell and candida. Organisms in the lamina propria were commonly phagocytized by macrophages but also were found free in lymphatics and blood vessels. Translocation of E. coli and endotoxin also occurred directly through enterocytes rather than between them, but translocated endotoxin diffused through the lamina propria and muscular wall of the bowel wall by passing between rather than through the myocytes. These descriptive phenomena provide new insight into the role of the enterocyte and intestinal immune cells in the translocation process.


Nature Cell Biology | 2009

Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction

Stefano Fumagalli; Alessandro Di Cara; Arti Neb-Gulati; Francois Natt; Sandy Schwemberger; Jonathan Hall; George F. Babcock; Rosa Bernardi; Pier Paolo Pandolfi; George Thomas

Impaired ribosome biogenesis is attributed to nucleolar disruption and diffusion of a subset of 60S ribosomal proteins, particularly ribosomal protein (rp)L11, into the nucleoplasm, where they inhibit MDM2, leading to p53 induction and cell-cycle arrest. Previously, we demonstrated that deletion of the 40S rpS6 gene in mouse liver prevents hepatocytes from re-entering the cell cycle after partial hepatectomy. Here, we show that this response leads to an increase in p53, which is recapitulated in culture by rpS6-siRNA treatment and rescued by the simultaneous depletion of p53. However, disruption of biogenesis of 40S ribosomes had no effect on nucleolar integrity, although p53 induction was mediated by rpL11, leading to the finding that the cell selectively upregulates the translation of mRNAs with a polypyrimidine tract at their 5′-transcriptional start site (5′-TOP mRNAs), including that encoding rpL11, on impairment of 40S ribosome biogenesis. Increased 5′-TOP mRNA translation takes place despite continued 60S ribosome biogenesis and a decrease in global translation. Thus, in proliferative human disorders involving hypomorphic mutations in 40S ribosomal proteins, specific targeting of rpL11 upregulation would spare other stress pathways that mediate the potential benefits of p53 induction.


Cancer Research | 2005

A-Melanocortin and Endothelin-1 Activate Antiapoptotic Pathways and Reduce DNA Damage in Human Melanocytes

Ana Luisa Kadekaro; Renny Kavanagh; Hiromi Kanto; Silva Terzieva; J. Hauser; Nobuhiko Kobayashi; Sandy Schwemberger; James Cornelius; George F. Babcock; Howard G. Shertzer; Glynis Scott; Zalfa A. Abdel-Malek

UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes. Therefore, insuring the survival and genomic stability of epidermal melanocytes is critical for inhibiting photocarcinogenesis, particularly melanoma, the most deadly form of skin cancer. The paracrine factors alpha-melanocortin and endothelin-1 are critical for the melanogenic response of cultured human melanocytes to UV radiation. We report that alpha-melanocortin and endothelin-1 rescued human melanocytes from UV radiation-induced apoptosis and reduced DNA photoproducts and oxidative stress. The survival effects of alpha-melanocortin and endothelin-1 were mediated by activation of the melanocortin 1 and endothelin receptors, respectively. Treatment of melanocytes with alpha-melanocortin and/or endothelin-1 before exposure to UV radiation activated the inositol triphosphate kinase-Akt pathway and increased the phosphorylation and expression of the microphthalmia-related transcription factor. Treatment with alpha-melanocortin and/or endothelin-1 enhanced the repair of cyclobutane pyrimidine dimers and reduced the levels of hydrogen peroxide induced by UV radiation. These effects are expected to reduce genomic instability and mutagenesis.


Journal of Parenteral and Enteral Nutrition | 1995

Oral Glutamine Decreases Bacterial Translocation and Improves Survival in Experimental Gut-Origin Sepsis

Luca Gianotti; Alexander Jw; Roberto Gennari; Pyles T; George F. Babcock

BACKGROUND Glutamine has been shown to be an important dietary component for the maintenance of gut metabolism. The purpose of this study was to assess the potential benefit of glutamine-enriched diets on experimental gut-derived sepsis. METHODS BALB/c mice were fed either 2% glutamine-supplemented or 1% glycine-supplemented (near-isonitrogenous control) AIN-76A diets. Control mice received either nonsupplemented AIN-76A or regular Purina Rodent Laboratory Mouse Chow 5001 diets. After 10 days of feeding, the mice were transfused with allogeneic blood (from C3H/HeJ mice), and the feeding protocols were continued for an additional 5 days. The mice then underwent gavage with 10(10) Escherichia coli labeled with either indium-111 oxine or [14C]glucose followed immediately by a 20% burn injury. Some mice were observed 10 days postburn for survival rates. Others were killed 4 hours after burn, and the mesenteric lymph nodes, liver, and spleen were harvested to determine radionuclide and bacterial colony counts. The percentages of viable translocated E coli were also calculated. RESULTS Mice fed glutamine-enriched diets had a lower degree of translocation (as measured by both radionuclide and bacterial counts) to the tissues than did the other groups and had an improvement in the ability to kill translocated E coli (as measured by the percentage of viable bacteria). Survival was significantly higher in the group fed 2% glutamine (81%) compared with the groups fed 1% glycine (36%), AIN-76A (35%), and Purina Rodent Laboratory Mouse Chow 5001 (36%) diets (p < .004). CONCLUSIONS Glutamine-supplemented enteral diets may exert important benefits in preventing gut-origin sepsis after trauma.


Immunological Reviews | 1983

Correlation of Functional Properties of Human Lymphoid Cell Subsets and Surface Marker Phenotypes Using Multiparameter Analysis and Flow Cytometry

Lewis L. Lanier; Edgar G. Engleman; P. Gatenby; George F. Babcock; Noel L. Warner; Leonard A. Herzenberg

INTRODUCTION Recognition of heterogeneity in lymphocyte populations has been achieved both through the discovery of selective expression of specific cell surface antigens on lymphoid cells and by findings of different functional properties of cells bearing these antigens. The explosive development of hybridoma technology, coupled with the analytical and separation capabilities of fluorescence-activated cell sorting, has led to an extensive classification of human lymphocytes into defined subsets. Of particular importance is the fact that expression of certain cell surface antigens correlates with functional properties or the differentiation state of the cell. Although in most cases the actual physiological role of the cell surface antigen is as yet unknown, monoclonal antibodies can be used to positively or negatively select identified subpopulations of cells for further functional, biochemical or genetic studies. It is anticipated that eventually it should be possible to unequivocally identify only those cells mediating a specific and select function by analysis of their cell surface phenotype.


Journal of Immunology | 2005

Unconjugated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration

Pavitra Keshavan; Tracy L. Deem; Sandy Schwemberger; George F. Babcock; Joan M. Cook-Mills; Stephen D. Zucker

During lymphocyte migration, engagement of VCAM-1 stimulates the generation of endothelial cell-derived reactive oxygen species (ROS) and activation of matrix metalloproteinases, facilitating endothelial retraction. Because bilirubin is a potent antioxidant, we examined the hypothesis that this bile pigment inhibits VCAM-1-dependent cellular events. The migration of isolated murine splenic lymphocytes across monolayers of murine endothelial cell lines (which constitutively express VCAM-1) is significantly inhibited by physiological concentrations of bilirubin, in the absence of an effect on lymphocyte adhesion. Bilirubin administration also suppresses VCAM-1-stimulated ROS generation and reduces endothelial cell matrix metalloproteinase activity. In a murine asthma model characterized by VCAM-1-dependent airway inflammation, treatment of C57BL6/J mice with i.p. bilirubin decreases the total leukocyte count in the lung parenchyma and lavage fluid, through specific inhibition of eosinophil and lymphocyte infiltration. Blood eosinophil counts were increased in bilirubin-treated animals, while VCAM-1 expression in the capillary endothelium and cytokine levels in both lung lavage and supernatants from cultured lymph node lymphocytes were unchanged, suggesting that bilirubin inhibits leukocyte migration. Conclusion: bilirubin blocks VCAM-1-dependent lymphocyte migration in vitro and ameliorates VCAM-1-mediated airway inflammation in vivo, apparently through the suppression of cellular ROS production. These findings support a potential role for bilirubin as an endogenous immunomodulatory agent.


Annals of Surgery | 1991

DISTRIBUTION AND SURVIVAL OF ESCHERICHIA COLI TRANSLOCATING FROM THE INTESTINE AFTER THERMAL INJURY

Alexander Jw; Luca Gianotti; Pyles T; Carey Ma; George F. Babcock

The present investigation was performed to study the kinetics of tissue distribution and deposition of Escherichia coli and endotoxin translocating from the intestine after thermal injury. Escherichia coli was grown in the presence of 14C glucose and both labeled bacteria and endotoxin prepared from the labeled bacteria were used as translocation probes. Escherichia coli (10(8) to 10(10) bacteria) and E. coli endotoxin (100 micrograms per animal) were gavaged into the stomach immediately before a 30% burn injury was inflicted in mice. Animals were killed 1, 4 and 24 hours after burn injury. Translocation occurred extensively within 1 hour after burn injury. Expressed as amount of radioactivity per gram of tissue, translocation was greatest in the mesenteric lymph node (MLN) followed by spleen, lung, and liver. Translocation of endotoxin was similar to translocation of intact bacteria, with the exception that less radioactivity could be found in the peritoneal cavity and more in the liver. Both intact E. coli and endotoxin translocated directly through the intact bowel wall. Killing of bacteria was greatest in the MLN and spleen, approximating 95% to more than 99% of translocating bacteria. Killing efficiency was lowest in the lungs. It is concluded that estimation of translocation by viable bacterial counts in tissues grossly underestimates the extent of translocation of bacteria and ignores the extent of translocation of endotoxin. Translocation of endotoxin may have biologic significance that is independent of and in addition to translocation of intact bacteria.


Stem Cells and Development | 2010

Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

Elisia D. Tichy; Resmi Pillai; Li Deng; Li Liang; Jay A. Tischfield; Sandy Schwemberger; George F. Babcock; Peter J. Stambrook

Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.


Cancer Research | 2005

Liver-Specific pRB Loss Results in Ectopic Cell Cycle Entry and Aberrant Ploidy

Christopher N. Mayhew; Emily E. Bosco; Sejal R. Fox; Tomohisa Okaya; Pheruza Tarapore; Sandy Schwemberger; George F. Babcock; Alex B. Lentsch; Kenji Fukasawa; Erik S. Knudsen

The liver exhibits an exquisitely controlled cell cycle, wherein hepatocytes are maintained in quiescence until stimulated to proliferate. The retinoblastoma tumor suppressor, pRB, plays a central role in proliferative control by inhibiting inappropriate cell cycle entry. In many cases, liver cancer arises due to aberrant cycles of proliferation, and correspondingly, pRB is functionally inactivated in the majority of hepatocellular carcinomas. Therefore, to determine how pRB loss may provide conditions permissive for deregulated hepatocyte proliferation, we investigated the consequence of somatic pRB inactivation in murine liver. We show that liver-specific pRB loss results in E2F target gene deregulation and elevated cell cycle progression during post-natal growth. However, in adult livers, E2F targets are repressed and hepatocytes become quiescent independent of pRB, suggesting that other factors may compensate for pRB loss. Therefore, to probe the consequences of acute pRB inactivation in livers of adult mice, we gave adenoviral-Cre by i.v. injection. We show that acute pRB loss is sufficient to elicit E2F target gene expression and cell cycle entry in adult liver, demonstrating a critical role for pRB in maintaining hepatocyte quiescence. Finally, we show that liver-specific pRB loss results in the development of nuclear pleomorphism associated with elevated ploidy that is evident in adult mice harboring both acute and chronic pRB loss. Together, these results show the crucial role played by pRB in maintaining hepatocyte quiescence and ploidy in adult liver in vivo and underscore the critical importance of delineating the consequences of acute pRB loss in adult animals.


The FASEB Journal | 2010

Melanocortin 1 receptor genotype: An important determinant of the damage response of melanocytes to ultraviolet radiation

Ana Luisa Kadekaro; Sancy A. Leachman; Renny Kavanagh; Viki B. Swope; Pamela B. Cassidy; Dorothy M. Supp; Maureen A. Sartor; Sandy Schwemberger; George F. Babcock; Kazumasa Wakamatsu; Shosuke Ito; Amy Koshoffer; Raymond E. Boissy; Prashiela Manga; Richard A. Sturm; Zalfa A. Abdel-Malek

The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α‐melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α‐melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation‐induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. non‐functional receptor to α‐melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α‐melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.—Kadekaro, A. L., Leachman, S., Kavanagh, R. J., Swope, V., Cassidy, P., Supp, D., Sartor, M., Schwemberger, S., Babcock, G., Wakamatsu, K., Ito, S., Koshoffer, A., Boissy, R. E., Manga, P., Sturm, R. A., Abdel‐Malek, Z. A. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J. 24, 3850–3860 (2010). www.fasebj.org

Collaboration


Dive into the George F. Babcock's collaboration.

Top Co-Authors

Avatar

Sandy Schwemberger

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Alexander Jw

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Cora K. Ogle

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Nishioka

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Amoscato

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Gianotti

University of Cincinnati

View shared research outputs
Researchain Logo
Decentralizing Knowledge