George Heald
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Heald.
Monthly Notices of the Royal Astronomical Society | 2012
Anna M. M. Scaife; George Heald
We present parametrized broad-band spectral models valid at frequencies between 30 and 300 MHz for six bright radio sources selected from the 3C survey, spread in right ascension from 0 to 24 h. For each source, data from the literature are compiled and tied to a common flux density scale. These data are then used to parametrize an analytic polynomial spectral calibration model. The optimal polynomial order in each case is determined using the ratio of the Bayesian evidence for the candidate models. Maximum likelihood parameter values for each model are presented, with associated errors, and the percentage error in each model as a function of frequency is derived. These spectral models are intended as an initial reference for science from the new generation of low-frequency telescopes now coming online, with particular emphasis on the Low Frequency Array (LOFAR).
Astronomy and Astrophysics | 2012
Niels Oppermann; H. Junklewitz; G. Robbers; M. R. Bell; T. A. Enßlin; A. Bonafede; R. Braun; Jo-Anne Brown; T. E. Clarke; Ilana J. Feain; B. M. Gaensler; A. Hammond; L. Harvey-Smith; George Heald; M. Johnston-Hollitt; U. Klein; Philipp P. Kronberg; Shude Mao; N. M. McClure-Griffiths; S. P. O’Sullivan; Luke Pratley; Timothy Robishaw; Subhashis Roy; D. H. F. M. Schnitzeler; C. Sotomayor-Beltran; J. Stevens; J. M. Stil; C. Sunstrum; A. Tanna; A. R. Taylor
We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources to date. In the map-making procedure we used a recently developed algorithm that reconstructs the map and the power spectrum of a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able to identify some rotation angles that are offset by an integer multiple of π. The resulting map can be seen as an improved version of earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power law behavior C� ∝ � −2.17 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) ∝ k −2.17 of the underlying
Astronomy and Astrophysics | 2011
George Heald; G. I. G. Józsa; Paolo Serra; Laura K. Zschaechner; Richard J. Rand; Filippo Fraternali; Tom Oosterloo; Rene A. M. Walterbos; E. Jütte; Gianfranco Gentile
We introduce a new, very deep neutral hydrogen (H i) survey being performed with the Westerbork Synthesis Radio Telescope (WSRT). The Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) Survey is producing an archive of some of the most sensitive H i observations available, on the angular scales which are most useful for studying faint, diffuse gas in and around nearby galaxies. The survey data are being used to perform careful modeling of the galaxies, characterizing their gas content, morphology, and kinematics, with the primary goal of revealing the global characteristics of cold gas accretion onto spiral galaxies in the local Universe. In this paper, we describe the survey sample selection, the data acquisition, reduction, and analysis, and present the data products obtained during our pilot program, which consists of UGC 2082, NGC 672, NGC 925, and NGC 4565. The observations reveal a first glimpse of the picture that the full HALOGAS project aims to illuminate: the properties of accreting H i in different types of spirals, and across a range of galactic environments. None of the pilot survey galaxies hosts an H i halo of the scale of NGC 891, but all show varying indications of halo gas features. We compare the properties of detected features in the pilot survey galaxies with their global characteristics, and discuss similarities and differences with NGC 891 and NGC 2403.
Astronomy and Astrophysics | 2013
C. Sotomayor-Beltran; C. Sobey; J. W. T. Hessels; G. De Bruyn; A. Noutsos; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; R. Beck; M. E. Bell; M. R. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; L. Bîrzan; A. Bonafede; F. Breitling; J. Broderick; W. N. Brouw; M. Brüggen; B. Ciardi; F. de Gasperin; R.-J. Dettmar; S. Duscha; J. Eislöffel; H. Falcke; R. A. Fallows; R. P. Fender; C. Ferrari
Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.
Publications of the Astronomical Society of Australia | 2013
R. P. Norris; J. Afonso; David Bacon; R. Beck; M. E. Bell; R. J. Beswick; Philip Best; Sanjay Bhatnagar; Annalisa Bonafede; G. Brunetti; Tamas Budavari; R. Cassano; James J. Condon; C. M. Cress; Arwa Dabbech; Ilana J. Feain; R. P. Fender; C. Ferrari; B. M. Gaensler; G. Giovannini; M. Haverkorn; George Heald; Kurt van der Heyden; Andrew M. Hopkins; M. J. Jarvis; M. Johnston-Hollitt; Roland Kothes; Huib Jan van Langevelde; Joseph Lazio; Minnie Y. Mao
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
Monthly Notices of the Royal Astronomical Society | 2016
W. L. Williams; R. J. van Weeren; Huub Röttgering; Philip Best; T. J. Dijkema; F. de Gasperin; M. J. Hardcastle; George Heald; I. Prandoni; J. Sabater; T. W. Shimwell; C. Tasse; I. van Bemmel; M. Brüggen; G. Brunetti; John Conway; T. A. Enßlin; D. Engels; H. Falcke; C. Ferrari; M. Haverkorn; N. Jackson; M. J. Jarvis; A. D. Kapińska; E. K. Mahony; G. K. Miley; L. K. Morabito; Raffaella Morganti; E. Orru; S. S. Sridhar
We present the first wide area (19 deg(2)), deep (a parts per thousand 120-150 mu Jy beam(-1)), high-resolution (5.6 x 7.4 arcsec) LOFAR High Band Antenna image of the Bootes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg(2), with a peak flux density threshold of 5 sigma. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
Astronomy and Astrophysics | 2012
F. de Gasperin; E. Orru; M. Murgia; Andrea Merloni; H. Falcke; R. Beck; R. J. Beswick; L. Bîrzan; A. Bonafede; M. Brüggen; G. Brunetti; K. T. Chyży; John Conway; J. H. Croston; T. A. Enßlin; C. Ferrari; George Heald; S. Heidenreich; N. Jackson; G. Macario; John McKean; George K. Miley; Raffaella Morganti; A. R. Offringa; R. Pizzo; David A. Rafferty; H. J. A. Röttgering; A. Shulevski; M. Steinmetz; C. Tasse
Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4×109 M, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intracluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radiospectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of 10 μG, which increases to 13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of 40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s−1.
Astronomy and Astrophysics | 2010
R. Braun; George Heald; R. Beck
A sample of large northern Spitzer Infrared Nearby Galaxies Survey (SINGS) galaxies was observed with the Westerbork Synthesis Radio Telescope (WSRT) at 1300 ‐ 1760 MHz. In Paper II of this series, we described sensitive observations of the linearly polarized radio continuum emission in this WSRT-SINGS galaxy sample. Large-scale magnetic field structures of two basic types are found: (a) disk fields with a spiral topology in all detected targets ; and (b) circumnuclear, bipolar outflow fields in a subset. He re we explore the systematic patterns of azimuthal modulation of both the Faraday depth and the polarized intensity and their variati on with galaxy inclination. A self-consistent and fully general model for both the locations of net polarized emissivity at 1 ‐ 2 GHz frequencies and the global magnetic field topology of nearby galaxies emerge s. Net polarized emissivity is concentrated into two zones located above and below the galaxy mid-plane, with the back-side zone suffering substantial depolarization (by a factor of 4 ‐ 5) relat ive to the front-side zone in its propagation through the turbulent mi d-plane. The field topology which characterizes the thick-d isk emission zone, is in all cases an axisymmetric spiral with a quadrupole dependance on height above the mid-plane. The front-side emission is affected by only mild dispersion (10’s of rad m −2 ) from the thermal plasma in the galaxy halo, while the back-side emission is affected by additional strong dispersion (100’s of rad m −2 ) from an axi-symmetric spiral field in the galaxy mid-plane. The field topology in the upper halo of galaxies is a mixture of two distinct types: a simple extension of the axisymmetric spiral quadrupole fie ld of the thick disk and a radially directed dipole field. The dipole co mponent might be a manifestation of (1) a circumnuclear, bipolar outflow, (2) an in situ generated dipole field, or (3) evidence of a non-stationary g lobal halo.
Astronomy and Astrophysics | 2013
Gianfranco Gentile; G. I. G. Józsa; Paolo Serra; George Heald; W. J. G. de Blok; Filippo Fraternali; Maria T. Patterson; Rene A. M. Walterbos; Tom Oosterloo
We present the analysis of new, deep Hi observations of the spiral galaxy NGC 3198 as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey, with the main aim of investigating the presence, amount, morphology, and kinematics of extraplanar gas. We present models of the Hi observations of NGC 3198. The model that matches best the observed data cube features a thick disk with a scale height of similar to 3 kpc and an Hi mass of about 15% of the total Hi mass; this thick disk also has a decrease in rotation velocity as a function of height (lag) of 7-15 km s(-1) kpc(-1) (though with large uncertainties). This extraplanar gas is detected for the first time in NGC 3198. Radially, this gas appears to extend slightly beyond the actively star-forming body of the galaxy (as traced by the H alpha emission), but it is not more radially extended than the outer, fainter parts of the stellar disk. Compared to previous studies, thanks to the improved sensitivity we trace the rotation curve out to larger radii. We model the rotation curve in the framework of modified Newtonian dynamics (MOND) and confirm that, with the allowed distance range we assumed, fit quality is modest in this galaxy, but the new outer parts are explained in a satisfactory way.
Astronomy and Astrophysics | 2012
R. J. van Weeren; H. J. A. Röttgering; David A. Rafferty; R. Pizzo; A. Bonafede; M. Brüggen; G. Brunetti; C. Ferrari; E. Orru; George Heald; John McKean; C. Tasse; F. de Gasperin; L. Bîrzan; J. E. van Zwieten; S. van der Tol; A. Shulevski; N. Jackson; A. R. Offringa; John Conway; H. T. Intema; T. E. Clarke; I. van Bemmel; G. K. Miley; G. J. White; M. Hoeft; R. Cassano; G. Macario; Raffaella Morganti; M. W. Wise
Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 +/- 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 +/- 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last similar to 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.