Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Hoppe is active.

Publication


Featured researches published by George Hoppe.


Immunity | 2008

Induction of Immunological Tolerance by Apoptotic Cells Requires Caspase-Dependent Oxidation of High-Mobility Group Box-1 Protein

Hirotaka Kazama; Jean-Ehrland Ricci; John M. Herndon; George Hoppe; Douglas R. Green; Thomas A. Ferguson

The mammalian immune system discriminates between modes of cell death; necrosis often results in inflammation and adaptive immunity, whereas apoptosis tends to be anti-inflammatory and promote immune tolerance. We have examined apoptosis for the features responsible for tolerance; specifically, we looked at the roles of caspases and mitochondria. Our results show that caspase activation targeted the mitochondria to produce reactive oxygen species (ROS), which were critical to tolerance induction by apoptotic cells. ROS oxidized the potential danger signal high-mobility group box-1 protein (HMGB1) released from dying cells and thereby neutralized its stimulatory activity. Apoptotic cells failed to induce tolerance and instead stimulated immune responses by scavenging or by mutating a mitochondrial caspase target protein when ROS activity was prohibited. Similarly, blocking sites of oxidation in HMGB1 prevented tolerance induction by apoptotic cells. These results suggest that caspase-orchestrated mitochondrial events determine the impact of apoptotic cells on the immune response.


Journal of Biological Chemistry | 2006

Light-induced Oxidation of Photoreceptor Outer Segment Phospholipids Generates Ligands for CD36-mediated Phagocytosis by Retinal Pigment Epithelium A POTENTIAL MECHANISM FOR MODULATING OUTER SEGMENT PHAGOCYTOSIS UNDER OXIDANT STRESS CONDITIONS

Mingjiang Sun; Silvia C. Finnemann; Maria Febbraio; Lian Shan; Suresh P. Annangudi; Eugene A. Podrez; George Hoppe; Ruth M. Darrow; Daniel T. Organisciak; Robert G. Salomon; Roy L. Silverstein; Stanley L. Hazen

Clearance by the retinal pigment epithelium (RPE) of shed photoreceptor outer segments (OSs), a tissue with one of the highest turnover rates in the body, is critical to the maintenance and normal function of the retina. We hypothesized that there is a potential role for photo-oxidation in OS uptake by RPE via scavenger receptor-mediated recognition of structurally defined lipid peroxidation products. We now demonstrate that specific structurally defined oxidized species derived from arachidonyl, linoleoyl, and docosahexanoyl phosphatidylcholine may serve as endogenous ligands on OSs for uptake by RPE via the scavenger receptor CD36. Mass spectrometry studies of retinal lipids recovered from dark-adapted rats following physiological light exposure demonstrate in vivo formation of specific oxidized phosphatidylcholine molecular species possessing a CD36 recognition motif, an oxidatively truncated sn-2 acyl group with a terminal γ-hydroxy(or oxo)-α,β-unsaturated carbonyl. Cellular studies using RPE isolated from wild-type versus CD36 null mice suggest that CD36 plays a role in engulfment, but not initial binding, of OSs via these oxidized phospholipids. Parallel increases in OS protein-bound nitrotyrosine, a post-translational modification by nitric oxide (NO)-derived oxidants, were also observed, suggesting a possible role for light-induced generation of NO-derived oxidants in the initiation of OS lipid peroxidation. Collectively, these studies suggest that intense light exposure promotes “oxidative tagging” of photoreceptor outer segments with structurally defined choline glycerophospholipids that may serve as a physiological signal for CD36-mediated phagocytosis under oxidant stress conditions.


Journal of Clinical Investigation | 1994

Inactivation of lysosomal proteases by oxidized low density lipoprotein is partially responsible for its poor degradation by mouse peritoneal macrophages.

George Hoppe; June O'Neil; Henry F. Hoff

Deficient processing of apo B in oxidized LDL (ox-LDL) by macrophage lysosomal proteases has been documented and attributed to modifications in apo B. We have investigated whether direct inactivation of lysosomal proteases by ox-LDL could also be responsible for this deficient degradation. When mouse peritoneal macrophages (MPM) were preincubated for 21 h at 37 degrees C with ox-LDL, LDL, or vortex-aggregated LDL, only ox-LDL inhibited the subsequent degradation of 125I-labeled forms of the above lipoproteins. Uptake of labeled lipoproteins was not appreciably affected by preincubation with ox-LDL, suggesting that the inhibition was at the level of lysosomal degradation. Thiol protease activity of cell extracts at pH 4.0, was reduced in MPM preincubated with ox-LDL relative to cells preincubated with LDL or medium alone. Extracts from untreated MPM, or mixtures of cathepsin B and D, showed a reduced ability to degrade 125I-LDL at pH 4.5 and reduced cathepsin B activity, after incubation with ox-LDL relative to incubation with LDL. Thus, the reduced degradation of lipoproteins in MPM pretreated with ox-LDL could be due to direct inactivation of the lysosomal protease, cathepsin B.


Ophthalmology | 2009

A Change in Oxygen Supplementation Can Decrease the Incidence of Retinopathy of Prematurity

Jonathan E. Sears; Jeffrey Pietz; Christine Sonnie; David Dolcini; George Hoppe

PURPOSE To determine the incidence of retinopathy of prematurity (ROP) over a 2-year period before and after a change in the practice of oxygen supplementation. DESIGN Nonrandomized, retrospective study. PARTICIPANTS All infants in a single Level III neonatal intensive care unit between the years of 2005 and 2007. METHODS A prospective database recorded the gestational age, birth weight, stage and zone of ROP, threshold disease, treatment, final outcome and date of examination, maternal and infant demographics, and neonatal intensive care unit course. Year 1 (August 1, 2005 to July 31, 2006) includes a patient cohort who received the standard oxygen supplementation protocol, which has oxygen targets of 95% to 100% saturation. Year 2 (August 1, 2006 to July 31, 2007) includes a patient cohort who has strictly monitored oxygen targets of <34 weeks corrected gestational age oxygen limits of 80% to 95% and target 85% to 92% oxygen saturation and >34 weeks corrected gestational age limits of 85% to 100% and target 92% to 97% saturation. MAIN OUTCOME MEASURE Incidence of ROP in year 1 before a change in oxygen protocol compared with the incidence of ROP in year 2 after a change in the oxygen protocol. RESULTS A total of 114 children in year 1 and 108 children in year 2 were identified as having been born or transferred to the Fairview Nursery. Ninety-eight infants were examined before and 92 infants were examined after the change in oxygen standards, comprising 190 consecutive patients examined between September 2005 and October 2007. ROP was present in 35% of infants in group 1 before the change in oxygen protocol compared with 13% after the change in oxygen standards (P=0.001); stage 3 decreased from 11% to 2% (P=0.021); threshold disease decreased from 7% to 1% (P=0.066). Stage 0 (immature vessels, no ROP) incidence increased (pre/post-oxygen change 30%/51% stage 0, P=0.001). There were statistically significant differences in mode of delivery (P=0.007), sepsis <3 days of life (P=0.01), and oxygen at discharge (P=0.003). CONCLUSIONS Lower oxygen targets at early gestational age and higher oxygen targets at older gestational age decrease the severity and incidence of ROP while inducing normal retinal development.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Phospholipid Hydroxyalkenals Biological and Chemical Properties of Specific Oxidized Lipids Present in Atherosclerotic Lesions

Henry F. Hoff; June O'Neil; Zhiping Wu; George Hoppe; Robert L. Salomon

Objective—Phosphatidylcholine hydroxyalkenals (PC-HAs) are a class of oxidized PCs derived from lipid peroxidation of arachidonate or linoleate at the sn-2 position to form terminal &ggr;-hydroxy, &agr;-, and &bgr;-unsaturated aldehydes. The aim of this study was to characterize some of their biological properties, ascertain the mechanism of their action, and assess whether they have in vivo relevance. Methods and Results—Combinations of cell biological approaches with radiolabels, mass spectroscopy, and immunochemical as well as immunohistochemical techniques were used to show that PC-HAs reduce the proteolytic degradation by mouse peritoneal macrophages (MPMs) of internalized macromolecules, such as maleylated bovine serum albumin, and that the activity of the lysosomal protease, cathepsin B, in MPMs form Michael adducts with MPM proteins and with N-acetylated cysteine in vitro form pyrrole adducts with MPM proteins and reduce the maturation of Rab5a, thereby impairing phagosome-lysosome fusion (maturation) in phagocytes; they are present unbound and as pyrrole adducts in human atherosclerotic lesions. Conclusions—PC-HAs are present in vivo and possess multiple functions characteristic of oxidized LDL and 4-hydroxynonenal.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy

Jonathan E. Sears; George Hoppe; Quteba Ebrahem; Bela Anand-Apte

Oxygen-induced retinopathy (OIR) in the mouse, like the analogous human disease retinopathy of prematurity, is an ischemic retinopathy dependent on oxygen-induced vascular obliteration. We tested the hypothesis that chemically overriding the oxygen-induced downregulation of hypoxia-inducible factor (HIF) activity would prevent vascular obliteration and subsequent pathologic neovascularization in the OIR model. Because the degradation of HIF-1α is regulated by prolyl hydroxylases, we examined the effect of systemic administration of a prolyl hydroxylase inhibitor, dimethyloxalylglycine, in the OIR model. Our results determine that stabilizing HIF activity in the early phase of OIR prevents the oxygen-induced central vessel loss and subsequent vascular tortuosity and tufting that is characteristic of OIR. Overall, these findings imply that simulating hypoxia chemically by stabilizing HIF activity during the causative ischemia phase (hyperoxia) of retinopathy of prematurity may be of therapeutic value in preventing progression to the proliferative stage of the disease.


Lipids | 2004

Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development.

Amir Ravandi; Saeid Babaei; Ramsey Leung; Juan Carlos Monge; George Hoppe; Henry F. Hoff; Hiroshi Kamido; A. Kuksis

We identified and quantified the hydroperoxides, hydroxides, epoxides, isoprostanes, and core aldehydes of the major phospholipids as the main components of the oxophospholipids (a total of 5–25 pmol/μmol phosphatidylcholine) in a comparative study of human atheroma from selected stages of lesion development. The developmental stages examined included fatty streak, fibrous plaque, necrotic core, and calcified tissue. The lipid analyses were performed by normal-phase HPLC with on-line electrospray MS using conventional total lipid extracts. There was great variability in the proportions of the various oxidation products and a lack of a general trend. Specifically, the early oxidation products (hydroperoxides and epoxides) of the glycerophosphocholines were found at the advanced stages of the plaques in nearly the same relative abundance as the more advanced oxidation products (core aldehydes and acids). The anticipated linear accumulation of the more stable oxidation products with progressive development of the atherosclerotic plaque was not apparent. It is therefore suggested that lipid infiltration and/or local peroxidation is a continuous process characterized by the formation and destruction of both early and advanced products of lipid oxidation at all times. The process of lipid deposition appears to have been subject to both enzymatic and chemical modification of the normal tissue lipids. Clearly, the appearance of new and disproportionate old lipid species excludes randomness in any accumulation of oxidized LDL lipids in atheroma.


Free Radical Biology and Medicine | 1997

Inactivation of cathepsin B by oxidized LDL involves complex formation induced by binding of putative reactive sites exposed at low pH to thiols on the enzyme.

June O'Neil; George Hoppe; Lawrence M. Sayre; Henry F. Hoff

We recently showed that the poor degradation of apo B in oxidized (ox-) LDL by mouse peritoneal macrophages could be attributed to the inactivation of cathepsin B by ox-LDL. In this current study, we show that enzyme inactivation involves complex formation of ox-LDL with cathepsin B rather than the diffusion of reactive components from ox-LDL to the enzyme. Complex formation between ox-LDL and cathepsin B was far greater at pH 4.5 than at pH 7.4 and far greater with ox-LDL than with LDL. Even though complexes were also formed between ox-LDL and other proteins such as BSA, insulin, and LDL, ox-LDL bound up to 30 times more cathepsin B than BSA, when compared on a molar level and under the same conditions. Unlike ox-LDL alone, complexes of ox-LDL and BSA were unable to inactive cathepsin B, suggesting that BSA was sequestering reactive sites on ox-LDL. The interaction of ox-LDL with proteins such as cathepsin B appears to represent aldehydic modifications of apo B, since treatment of ox-LDL with the reductant NaBH4, which stabilizes such adducts, greatly decreased the binding of ox-LDL to BSA and prevented ox-LDL from inactivating cathepsin B. It is likely that thiols on cathepsin B or other proteins interact with reactive groups on ox-LDL, since BSA in which thiols were blocked with N-ethylmaleimide (NEM), failed to bind to ox-LDL. Moreover, NEM-treated BSA had no effect on the ability of ox-LDL to inactivate cathepsin B. Similar results were obtained with LDL modified with 4-hydroxynonenal (HNE). These data suggest that aldehydic adducts on ox-LDL that are unreactive at neutral pH, possibly HNE bound to apo B, become exposed at acidic pH and then covalently bind thiols on neighboring proteins such as cathepsin B in lysosomes, inducing crosslinking of proteins and enzyme inactivation.


Journal of Biological Chemistry | 2008

Cell Type-specific Post-transcriptional Regulation of Production of the Potent Antiangiogenic and Proatherogenic Protein Thrombospondin-1 by High Glucose

Sanghamitra Bhattacharyya; Tina E. Marinic; Irene Krukovets; George Hoppe; Olga I. Stenina

Hyperglycemia is an independent risk factor for development of vascular diabetic complications. Vascular dysfunction in diabetics manifests in a tissue-specific manner; macrovasculature is affected by atherosclerotic lesions, and microvascular complications are described as “aberrant angiogenesis”: in the same patient angiogenesis is increased in some tissues (e.g. retinal neovascularization) and decreased in others (e.g. in skin). Molecular cell- and tissue-specific mechanisms regulating the response of vasculature to hyperglycemia remain unclear. Thrombospondin-1 (TSP-1), a potent antiangiogenic and proatherogenic protein, has been implicated in the development of several vascular diabetic complications (atherosclerosis, nephropathy, and cardiomyopathy). This study examines cell type-specific regulation of production of thrombospondin-1 by high glucose. We previously reported the increased expression of TSP-1 in the large arteries of diabetic animals. mRNA and protein levels were up-regulated in response to high glucose. Unlike in macrovascular cells, TSP-1 protein levels are dramatically decreased in response to high glucose in microvascular endothelial cells and retinal pigment epithelial cells (RPE). This down-regulation is post-transcriptional; mRNA levels are increased. In situ mRNA hybridization and immunohistochemistry revealed that the level of mRNA is up-regulated in RPE of diabetic rats, whereas the protein level is decreased. This cell type-specific posttranscriptional suppression of TSP-1 production in response to high glucose in microvascular endothelial cells and RPE is controlled by untranslated regions of TSP-1 mRNA that regulate coupling of TSP-1 mRNA to polysomes and its translation. The cell-specific regulation of TSP-1 suggests a potential mechanism for the aberrant angiogenesis in diabetics and TSP-1 involvement in development of various vascular diabetic complications.


Biochimica et Biophysica Acta | 1997

Macrophage recognition of LDL modified by levuglandin E2, an oxidation product of arachidonic acid

George Hoppe; Ganesamoorthy Subbanagounder; June O'Neil; Robert G. Salomon; Henry F. Hoff

Levuglandin (LG) E2, a secoprostanoic acid levulinaldehyde derivative, is a product of free radical oxidation that forms covalent adducts with lysyl residues on proteins. Treatment of LDL with LGE2 leads to uptake and degradation by mouse peritoneal macrophages. Oxidized LDL, but not acetyl LDL efficiently competed for binding and uptake of LGE2-modified 125I-LDL. This result suggests that LGE2-modified LDL was recognized by a class of scavenger receptor that demonstrated ligand specificity for oxidized LDL but not for acetyl LDL.

Collaboration


Dive into the George Hoppe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge