Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Jackson de Moraes Rocha is active.

Publication


Featured researches published by George Jackson de Moraes Rocha.


Química Nova | 2009

Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar

Ester Ribeiro Gouveia; Renata Trajano do Nascimento; Ana Maria Souto-Maior; George Jackson de Moraes Rocha

In this work, a methodology for the characterization of sugar cane bagasse was validated. Bagasse pre-treated with steam in a 5000 L reactor at a pressure of 15.3 kgf/cm2, during 7 min, was used to test the methodology. The methodology consisted of the hydrolysis of the material with H2SO4 at 72% v/v, for the quantification of carbohydrates, organic acid, furfural and hydroxymethylfurfural by HPLC; insoluble lignin and ash by gravimetry; and soluble lignin by spectrophotometry. Linearity, repeatability, reproducibility and accuracy of the results obtained in two Research Laboratories were determined, and were considered to be suitable for the validation of the methodology.


Bioresource Technology | 2011

Second generation ethanol in Brazil: can it compete with electricity production?

Marina O.S. Dias; Marcelo P. Cunha; Charles D.F. Jesus; George Jackson de Moraes Rocha; José Geraldo da Cruz Pradella; Carlos Eduardo Vaz Rossell; Rubens Maciel Filho; Antonio Bonomi

Much of the controversy surrounding second generation ethanol production arises from the assumed competition with first generation ethanol production; however, in Brazil, where bioethanol is produced from sugarcane, sugarcane bagasse and trash will be used as feedstock for second generation ethanol production. Thus, second generation ethanol production may be primarily in competition with electricity production from the lignocellulosic fraction of sugarcane. A preliminary technical and economic analysis of the integrated production of first and second generation ethanol from sugarcane in Brazil is presented and different technological scenarios are evaluated. The analysis showed the importance of the integrated use of sugarcane including the biomass represented by surplus bagasse and trash that can be taken from the field. Second generation ethanol may favorably compete with bioelectricity production when sugarcane trash is used and when low cost enzyme and improved technologies become commercially available.


Journal of Industrial Microbiology & Biotechnology | 2011

A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid.

Larissa Canilha; Victor T. O. Santos; George Jackson de Moraes Rocha; João B. Almeida e Silva; Marco Giulietti; Silvio Silvério da Silva; Maria das Graças de Almeida Felipe; André Ferraz; Adriane M. F. Milagres; Walter Carvalho

Experiments based on a 23 central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar–alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.5°C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.


Bioresource Technology | 2013

Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products

Fernando Oliveira; Irapuan O. Pinheiro; Ana Maria Souto-Maior; Carlos Martín; Adilson R. Gonçalves; George Jackson de Moraes Rocha

Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment.


Bioresource Technology | 2012

Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

George Jackson de Moraes Rocha; Carlos Martín; Vinicius F. Da Silva; Edgardo O. Gomez; Adilson R. Gonçalves

Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup.


Bioresource Technology | 2010

Production, characterization and application of activated carbon from brewer's spent grain lignin

Solange I. Mussatto; Marcela Fernandes; George Jackson de Moraes Rocha; J.J.M. Órfão; J. A. Teixeira; Inês Conceição Roberto

Different types of activated carbon were prepared by chemical activation of brewers spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin.


Bioresource Technology | 2013

Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis

Maria Carolina de Albuquerque Wanderley; Carlos Martín; George Jackson de Moraes Rocha; Ester Ribeiro Gouveia

Enzymatic hydrolysis of pretreated sugarcane bagasse was performed to investigate the production of ethanol. The sugarcane bagasse was pretreated in a process combining steam explosion and alkaline delignification. The lignin content decreased to 83%. Fed-batch enzymatic hydrolyses was initiated with 8% (w/v) solids loading, and 10 FPU/g cellulose. Then, 1% solids were fed at 12, 24 or 48 h intervals. After 120 h, the hydrolysates were fermented with Saccharomyces cerevisiae UFPEDA 1238, and a fourfold increase in ethanol production was reached when fed-batch hydrolysis with a 12-h addition period was used for the steam pretreated and delignified bagasse.


Bioresource Technology | 2013

Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery

Solange Maria de Vasconcelos; Andrelina Maria Pinheiro Santos; George Jackson de Moraes Rocha; Ana Maria Souto-Maior

The influence of time (8-24 min), temperature (144-186 °C) and phosphoric acid concentration (0.05-0.20%, w/v) on the pretreatment of sugarcane bagasse in a 20 L batch rotary reactor was investigated. The efficiency of the pretreatment was verified by chemical characterization of the solid fraction of the pretreated bagasse and the conversion of cellulose to glucose by enzymatic hydrolysis. Models representing the percentage of cellulose, hemicelluloses, lignin, solubilized hemicellulose and the enzymatic conversion of cellulose to glucose were predictive and significant. Phosphoric acid concentration of 0.20% at temperature of 186 °C, during 8 and 24 min, was shown to be very effective in solubilizing hemicellulose from sugarcane bagasse, reaching solubilization of 96% and 98%, respectively. Relatively low amounts of inhibitors were produced, and the phosphoric acid remaining in the hemicellulosic hydrolysate is at adequate levels for supplying phosphorous requirement during subsequent fermentation.


Bioresource Technology | 2010

Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH)

Rita C.L.B. Rodrigues; George Jackson de Moraes Rocha; Durval Rodrigues; Hélcio José Izário Filho; Maria das Graças de Almeida Felipe; Adalberto Pessoa

Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxymethylfurfural (HMF). The hydrolysis scale-up procedure was based on the H-Factor, that combines temperature and residence time and employs the Arrhenius equation to model the sulfuric acid concentration (100 mg(acid)/g(dm)) and activation energy (109 kJ/mol). This procedure allowed the mathematical estimation of the results through simulation of the conditions prevailing in the reactors with different designs. The SBHH obtained from different reactors but under the same H-Factor of 5.45+/-0.15 reached similar xylose yield (approximately 74%) and low concentration of sugar degradation products, as furfural (0.082 g/L) and HMF (0.0071 g/L). Also, the highest lignin degradation products (phenolic compounds) were rho-coumarilic acid (0.15 g/L) followed by ferulic acid (0.12 g/L) and gallic acid (0.035 g/L). The highest concentration of ions referred to S (3433.6 mg/L), Fe (554.4 mg/L), K (103.9 mg/L). The H-Factor could be used without dramatically altering the xylose and HMF/furfural levels. Therefore, we could assume that H-Factor was directly useful in the scale-up of the hemicellulosic hydrolysate production.


Biotechnology and Bioengineering | 2017

Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis

Simone Coelho Nakanishi; Lauren B. Soares; Luiz Eduardo Biazi; Viviane Marcos Nascimento; Aline Carvalho da Costa; George Jackson de Moraes Rocha; Jaciane L. Ienczak

Alcoholic fermentation of released sugars in pretreatment and enzymatic hydrolysis of biomass is a central feature for second generation ethanol (E2G) production. Saccharomyces cerevisiae used industrially in the production of first generation ethanol (E1G) convert sucrose, fructose, and glucose into ethanol. However, these yeasts have no ability to ferment pentose (xylose). Therefore, the present work has focused on E2G production by Scheffersomyces stipitis and Spathaspora passalidarum. The fermentation strategy with high pitch, cell recycle, fed‐batch mode, and temperature decrease for each batch were performed in a hydrolyzate obtained from a pretreatment at 130°C with NaOH solution (1.5% w/v) added with 0.15% (w/w) of anthraquinone (AQ) and followed by enzymatic hydrolysis. The process strategy has increased volumetric productivity from 0.35 to 0.38 g · L−1 · h−1 (first to third batch) for S. stipitis and from 0.38 to 0.81 g · L−1 · h−1 for S. passalidarum (first to fourth batch). Mass balance for the process proposed in this work showed the production of 177.33 kg ethanol/ton of sugar cane bagasse for S. passalidarum compared to 124.13 kg ethanol/ton of sugar cane bagasse for S. stipitis fermentation. The strategy proposed in this work can be considered as a promising strategy in the production of second generation ethanol. Biotechnol. Bioeng. 2017;114: 2211–2221.

Collaboration


Dive into the George Jackson de Moraes Rocha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Maria Souto-Maior

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge