George K. Christophides
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George K. Christophides.
Science | 2007
Robert M. Waterhouse; Evgenia V. Kriventseva; Stephan Meister; Zhiyong Xi; Kanwal S. Alvarez; Lyric C. Bartholomay; Carolina Barillas-Mury; Guowu Bian; Stéphanie Blandin; Bruce M. Christensen; Yuemei Dong; Haobo Jiang; Michael R. Kanost; Anastasios C. Koutsos; Elena A. Levashina; Jianyong Li; Petros Ligoxygakis; Robert M. MacCallum; George F. Mayhew; Antonio M. Mendes; Kristin Michel; Mike A. Osta; Susan M. Paskewitz; Sang Woon Shin; Dina Vlachou; Lihui Wang; Weiqi Wei; Liangbiao Zheng; Zhen Zou; David W. Severson
Mosquitoes are vectors of parasitic and viral diseases of immense importance for public health. The acquisition of the genome sequence of the yellow fever and Dengue vector, Aedes aegypti (Aa), has enabled a comparative phylogenomic analysis of the insect immune repertoire: in Aa, the malaria vector Anopheles gambiae (Ag), and the fruit fly Drosophila melanogaster (Dm). Analysis of immune signaling pathways and response modules reveals both conservative and rapidly evolving features associated with different functional gene categories and particular aspects of immune reactions. These dynamics reflect in part continuous readjustment between accommodation and rejection of pathogens and suggest how innate immunity may have evolved.
Proceedings of the National Academy of Sciences of the United States of America | 2002
George Dimopoulos; George K. Christophides; Stephan Meister; Jörg Schultz; Kevin P. White; Carolina Barillas-Mury; Fotis C. Kafatos
The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram− bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Sanjeev Kumar; George K. Christophides; Rafael Cantera; Bradley Charles; Yeon Soo Han; Stephan Meister; George Dimopoulos; Fotis C. Kafatos; Carolina Barillas-Mury
Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads.
Nucleic Acids Research | 2009
Daniel John Lawson; Peter Arensburger; Peter W. Atkinson; Nora J. Besansky; Robert V. Bruggner; Ryan Butler; Kathryn S. Campbell; George K. Christophides; Scott Christley; Emmanuel Dialynas; Martin Hammond; Catherine A. Hill; Nathan Konopinski; Neil F. Lobo; Robert M. MacCallum; Gregory R. Madey; Karine Megy; Jason M. Meyer; Seth Redmond; David W. Severson; Eric O. Stinson; Pantelis Topalis; Ewan Birney; William M. Gelbart; Fotis C. Kafatos; Christos Louis; Frank H. Collins
VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data.
Immunological Reviews | 2004
George K. Christophides; Dina Vlachou; Fotis C. Kafatos
Summary: In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquitos innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best‐studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow‐up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial ‘smart sprays’ capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.
Science | 2009
Michael Povelones; Robert M. Waterhouse; Fotis C. Kafatos; George K. Christophides
Leucine-rich repeat–containing proteins are central to host defense in plants and animals. We show that in the mosquito Anopheles gambiae, two such proteins that antagonize malaria parasite infections, LRIM1 and APL1C, circulate in the hemolymph as a high-molecular-weight complex held together by disulfide bridges. The complex interacts with the complement C3-like protein, TEP1, promoting its cleavage or stabilization and its subsequent localization on the surface of midgut-invading Plasmodium berghei parasites, targeting them for destruction. LRIM1 and APL1C are members of a protein family with orthologs in other disease vector mosquitoes and appear to be important effectors in innate mosquito defenses against human pathogens.
Current Biology | 2005
Dina Vlachou; Timm Schlegelmilch; George K. Christophides; Fotis C. Kafatos
BACKGROUND The malaria parasite Plasmodium must complete a complex developmental life cycle within Anopheles mosquitoes before it can be transmitted into the human host. One day after mosquito infection, motile ookinetes traverse the midgut epithelium and, after exiting to its basal site facing the hemolymph, develop into oocysts. Previously, we have identified hemolymph factors that can antagonize or promote parasite development. RESULTS We profiled on a genomic scale the transcriptional responses of the A. gambiae midgut to P. berghei and showed that more than 7% of the assessed mosquito transcriptome is differentially regulated during invasion. The profiles suggested that actin- and microtubule-cytoskeleton remodeling is a major response of the epithelium to ookinete penetration. Other responses encompass components of innate immunity, extracellular-matrix remodeling, and apoptosis. RNAi-dependent gene silencing identified both parasite antagonists and agonists among regulators of actin dynamics and revealed that actin polymerization is inhibitory to the invading parasite. Combined transcriptional and reverse-genetic analysis further identified an unexpected dual role of the lipid-trafficking machinery of the hemolymph for both parasite and mosquito-egg development. CONCLUSIONS We conclude that the determinants of malaria-parasite development in Anopheles include components not only of systemic humoral immunity but also of intracellular, local epithelial reactions. These results provide novel mechanistic insights for understanding malaria transmission in the mosquito vector.
PLOS Pathogens | 2009
Stephan Meister; Bogos Agianian; Fanny Turlure; Angela Relógio; Isabelle Morlais; Fotis C. Kafatos; George K. Christophides
Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram−). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sensed by the orthologous PGRPLC protein which then activates a signaling pathway that involves the Rel/NF-κB transcription factor REL2. PGRPLC signaling leads to transcriptional induction of antimicrobial peptides at early stages of hemolymph infections with the Gram-positive (Gram+) bacterium Staphylococcus aureus, but a different signaling pathway might be used in infections with the Gram− bacterium Escherichia coli. The size of mosquito symbiotic bacteria populations and their dramatic proliferation after a bloodmeal, as well as intestinal bacterial infections, are also controlled by PGRPLC signaling. We show that this defense response modulates mosquito infection intensities with malaria parasites, both the rodent model parasite, Plasmodium berghei, and field isolates of the human parasite, Plasmodium falciparum. We propose that the tripartite interaction between mosquito microbial communities, PGRPLC-mediated antibacterial defense and infections with Plasmodium can be exploited in future interventions aiming to control malaria transmission. Molecular analysis and structural modeling provided mechanistic insights for the function of PGRPLC. Alternative splicing of PGRPLC transcripts produces three main isoforms, of which PGRPLC3 appears to have a key role in the resistance to bacteria and modulation of Plasmodium infections. Structural modeling indicates that PGRPLC3 is capable of binding monomeric PGN muropeptides but unable to initiate dimerization with other isoforms. A dual role of this isoform is hypothesized: it sequesters monomeric PGN dampening weak signals and locks other PGRPLC isoforms in binary immunostimulatory complexes further enhancing strong signals.
Insect Molecular Biology | 2005
John Vontas; Claudia Blass; A. Koutsos; Jean-Philippe David; Fotis C. Kafatos; Christos Louis; Janet Hemingway; George K. Christophides; Hilary Ranson
A microarray containing approximately 20 000 expressed sequence tags (ESTs; 11 760 unique EST clusters) from the malaria vector, Anopheles gambiae, was used to monitor differences in global gene expression in two insecticide resistant and one susceptible strains. Statistical analysis identified 77 ESTs that were differentially transcribed among the three strains. These include the cytochrome P450 CYP314A1, over‐transcribed in the DDT resistant ZAN/U strain, and many genes that belong to families not usually associated with insecticide resistance, such as peptidases, sodium/calcium exchangers and genes implicated in lipid and carbohydrate metabolism. Short‐term (6 and 10 h) effects of exposure of the pyrethroid resistant RSP strain to permethrin were also detected. Several genes belonging to enzyme families already implicated in insecticide or xenobiotic detoxification were induced, including the carboxylesterase COEAE2F gene and members of the UDP‐glucuronosyl transferase and nitrilase families.
EMBO Reports | 2006
Anna Cohuet; Mike A. Osta; Isabelle Morlais; Parfait Awono-Ambene; Kristin Michel; Frédéric Simard; George K. Christophides; Didier Fontenille; Fotis C. Kafatos
Parasites that cause malaria must complete a complex life cycle in Anopheles vector mosquitoes in order to be transmitted from human to human. Previous gene‐silencing studies have shown the influence of mosquito immunity in controlling the development of Plasmodium. Thus, parasite survival to the oocyst stage increased when the parasite antagonist gene LRIM1 (leucine‐rich repeat immune protein 1) of the mosquito was silenced, but decreased when the C‐type lectin agonist gene CTL4 or CTLMA2 (CTL mannose binding 2) was silenced. However, such effects were shown for infections of the human mosquito vector Anopheles gambiae with the rodent parasite Plasmodium berghei. Here, we report the first results of A. gambiae gene silencing on infection by sympatric field isolates of the principal human pathogen P. falciparum. In contrast with the results obtained with the rodent parasite, silencing of the same three genes had no effect on human parasite development. These results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions.