George Kensah
Hannover Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Kensah.
European Heart Journal | 2013
George Kensah; Angelica Roa Lara; Julia Dahlmann; Robert Zweigerdt; Kristin Schwanke; Jan Hegermann; David Skvorc; Azadeh Azizian; Stefan Wagner; Lars S. Maier; Andreas Krause; Gerald Dräger; Matthias Ochs; Axel Haverich; Ina Gruh; Ulrich Martin
AIMS We explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality. METHODS AND RESULTS Murine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm(2) in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition. CONCLUSION BCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair.
Stem cell reports | 2014
Henning Kempf; Ruth Olmer; Christina Kropp; Michael Rückert; Monica Jara-Avaca; Diana Robles-Diaz; Annika Franke; David A. Elliott; Daniel Wojciechowski; Martin Fischer; Angelica Roa Lara; George Kensah; Ina Gruh; Axel Haverich; Ulrich Martin; Robert Zweigerdt
Summary To harness the potential of human pluripotent stem cells (hPSCs), an abundant supply of their progenies is required. Here, hPSC expansion as matrix-independent aggregates in suspension culture was combined with cardiomyogenic differentiation using chemical Wnt pathway modulators. A multiwell screen was scaled up to stirred Erlenmeyer flasks and subsequently to tank bioreactors, applying controlled feeding strategies (batch and cyclic perfusion). Cardiomyogenesis was sensitive to the GSK3 inhibitor CHIR99021 concentration, whereas the aggregate size was no prevailing factor across culture platforms. However, in bioreactors, the pattern of aggregate formation in the expansion phase dominated subsequent differentiation. Global profiling revealed a culture-dependent expression of BMP agonists/antagonists, suggesting their decisive role in cell-fate determination. Furthermore, metallothionein was discovered as a potentially stress-related marker in hPSCs. In 100 ml bioreactors, the production of 40 million predominantly ventricular-like cardiomyocytes (up to 85% purity) was enabled that were directly applicable to bioartificial cardiac tissue formation.
Biomaterials | 2013
Julia Dahlmann; Andreas Krause; Lena Möller; George Kensah; Markus Möwes; Astrid Diekmann; Ulrich Martin; Andreas Kirschning; Ina Gruh; Gerald Dräger
Despite recent major advances including reprogramming and directed cardiac differentiation of human cells, therapeutic application of in vitro engineered myocardial tissue is still not feasible due to the inability to construct functional large vascularized contractile tissue patches based on clinically applicable and fully defined matrix components. Typical matrices with preformed porous 3D structure cannot be applied due to the obvious lack of migratory capacity of cardiomyocytes (CM). We have therefore developed a fully defined in situ hydrogelation system based on alginate (Alg) and hyaluronic acid (HyA), in which their aldehyde and hydrazide-derivatives enable covalent hydrazone cross-linking of polysaccharides in the presence of viable myocytes. By varying degrees of derivatization, concentrations and composition of blends in a modular system, mechanophysical properties of the resulting hydrogels are easily adjustable. The hydrogel allowed for the generation of contractile bioartificial cardiac tissue from CM-enriched neonatal rat heart cells, which resembles native myocardium. A combination of HyA and highly purified human collagen I led to significantly increased active contraction force compared to collagen, only. Therefore, our in situ cross-linking hydrogels represent a valuable toolbox for the fine-tuning of engineered cardiac tissues mechanical properties and improved functionality, facilitating clinical translation toward therapeutic heart muscle reconstruction.
American Journal of Respiratory and Critical Care Medicine | 2013
Nico Lachmann; Christine Happle; Mania Ackermann; Doreen Lüttge; Martin Wetzke; Sylvia Merkert; Miriam Hetzel; George Kensah; Monica Jara-Avaca; Adele Mucci; Jelena Skuljec; Anna-Maria Dittrich; Nils Pfaff; Sebastian Brennig; Axel Schambach; Doris Steinemann; Gudrun Göhring; Tobias Cantz; Ulrich Martin; Nicolaus Schwerk; Gesine Hansen; Thomas Moritz
RATIONALE Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.
Tissue Engineering Part A | 2013
Zlata Vukadinovic-Nikolic; Birgit Andrée; Suzanne E. Dorfman; Michael Pflaum; Tibor Horvath; Marco Lux; Letizia Venturini; Antonia Bär; George Kensah; Angelica Roa Lara; I. Tudorache; Serghei Cebotari; Denise Hilfiker-Kleiner; Axel Haverich; Andres Hilfiker
The in vitro generation of a bioartificial cardiac construct (CC) represents a promising tool for the repair of ischemic heart tissue. Several approaches to engineer cardiac tissue in vitro have been conducted. The main drawback of these studies is the insufficient size of the resulting construct for clinical applications. The focus of this study was the generation of an artificial three-dimensional (3D), contractile, and suturable myocardial patch by combining a gel-based CC with decellularized porcine small intestinal submucosa (SIS), thereby engineering an artificial tissue of 11 cm² in size. The alignment and morphology of rat neonatal cardiomyocytes (rCMs) in SIS-CC complexes were investigated as well as the re-organization of primary endothelial cells which were co-isolated in the rCM preparation. The ability of a rat heart endothelial cell line (RHE-A) to re-cellularize pre-existing vessel structures within the SIS or a biological vascularized matrix (BioVaM) was determined. SIS-CC contracted spontaneously, uniformly, and rhythmically with an average rate of 200 beats/min in contrast to undirected contractions observed in CC without SIS support. rCM exhibited an elongated morphology with well-defined sarcomeric structures oriented along the longitudinal axis in the SIS-CC, whereas round-shaped and random-arranged rCM were observed in CC. Electric coupling of rCM was demonstrated by microelectrode array measurements. A dense network of CD31⁺/eNOS⁺ cells was detected as permeating the whole construct. Superficial supplementation of RHE-A cells to SIS-CC led to the migration of these cells through the CC, resulting in the re-population of pre-existing vessel structures within the decelluarized SIS. By infusion of RHE-A cells into the BioVaM venous and arterial pedicles, a re-population of the BioVaM vessel bed as well as distribution of RHE-A cells throughout the CC was achieved. Rat endothelial cells within the CC were in contact with RHE-A cells. Ingrowth and formation of a network by endothelial cells infused through the BioVaM represent a promising step toward engineering a functional perfusion system, enabling the engineering of vascularized and well-nourished 3D CC of dimensions relevant for therapeutic heart repair.
Optics Express | 2011
K. Kuetemeyer; George Kensah; Marko Heidrich; Heiko Meyer; Ulrich Martin; Ina Gruh; Alexander Heisterkamp
Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.
PLOS ONE | 2017
Sebastian V. Rojas; George Kensah; Alexander Rotaermel; Hassina Baraki; Ingo Kutschka; Robert Zweigerdt; Ulrich Martin; Axel Haverich; Ina Gruh; Andreas Martens; Johnson Rajasingh
Background Induced pluripotent stem cells (iPSC) can be differentiated into cardiomyocytes and represent a possible autologous cell source for myocardial repair. We analyzed the engraftment and functional effects of murine iPSC-derived cardiomyocytes (iPSC-CMs) in a murine model of myocardial infarction. Methods and results To maximize cardiomyocyte yield and purity a genetic purification protocol was applied. Murine iPSCs were genetically modified to express a Zeocin™ resistance gene under control of the cardiac-specific α-myosin heavy chain (α-MHC, MYH6) promoter. Thus, CM selection was performed during in vitro differentiation. iPSC-CM aggregates (“cardiac bodies”, CBs) were transplanted on day 14 after LAD ligation into the hearts of previously LAD-ligated mice (800 CBs/animal; 2-3x106 CMs). Animals were treated with placebo (PBS, n = 14) or iPSC-CMs (n = 35). Myocardial remodeling and function were evaluated by magnetic resonance imaging (MRI), conductance catheter (CC) analysis and histological morphometry. In vitro and in vivo differentiation was investigated. Follow up was 28 days (including histological assessment and functional analysis). iPSC-CM purity was >99%. Transplanted iPSC-CMs formed mature grafts within the myocardium, expressed cardiac markers and exhibited sarcomeric structures. Intramyocardial transplantation of iPSC-CMs significantly improved myocardial remodeling and left ventricular function 28 days after LAD-ligation. Conclusions We conclude that iPSCs can effectively be differentiated into cardiomyocytes and genetically enriched to high purity. iPSC derived cardiomyocytes engraft within the myocardium of LAD-ligated mice and contribute to improve left ventricular function.
PLOS ONE | 2018
Julia Dahlmann; George Awad; Carsten Dolny; Sönke Weinert; Karin Richter; Klaus-Dieter Fischer; Thomas Munsch; Volkmar Leßmann; Marianne Volleth; Martin Zenker; Yaoyao Chen; Claudia Merkl; Angelika Schnieke; Hassina Baraki; Ingo Kutschka; George Kensah
The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.
Tissue Engineering Part C-methods | 2011
George Kensah; Ina Gruh; Jörg Viering; Henning Schumann; Julia Dahlmann; Heiko Meyer; David Skvorc; Antonia Bär; Payam Akhyari; Alexander Heisterkamp; Axel Haverich; Ulrich Martin
Biomaterials | 2013
Julia Dahlmann; George Kensah; Henning Kempf; David Skvorc; David A. Elliott; Gerald Dräger; Robert Zweigerdt; Ulrich Martin; Ina Gruh