George Krauss
Colorado School of Mines
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Krauss.
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 1999
George Krauss
Abstract This paper reviews the strengthening mechanisms associated with the various components of martensitic microstructures in steels and other ferrous alloys. The first section examines the experiments and strengthening theories associated with Fe–Ni and Fe–Ni–C alloys, in which the martensite, because of subzero Ms temperatures, can be evaluated with carbon atoms trapped in octahedral interstitial sites. The evaluation of strengthening in these alloys has been limited to interpreting yield strength of unaged, untempered martensite in terms of interstitial solid solution strengthening. The second section reviews strengthening of martensitic Fe–C alloys and low-alloy carbon steels with above-room-temperature Ms temperatures. In these alloys, it is impossible to prevent C diffusion during quenching, and strengthening of martensite becomes dependent on static and dynamic strain aging due to carbon atom interaction with dislocation substructure. In all alloys the dominant strengthening component of martensitic microstructures is the matrix of martensitic crystals, either in lath or plate morphology, but secondary effects due to other microstructural components such as carbides and retained austenite are also discussed.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1989
G. L. Huang; Dk. Matlock; George Krauss
The strain and strain rate dependence of the deformation behavior of Type 304 stainless steel sheet was evaluated by constant temperature tensile testing in the temperature range of −80 °C to 160 °C. The strain rate sensitivity, strain hardening rate, and ductility reflected the compctition of two strengthening mechanisms: strain-induced transformation of austenite to martensite and dislocation substructure formation. At low temperatures, the strain rate sensitivity and strain hardening rate correlated with the strain-induced transformation rate. A maximum in total ductility occurred between 0 °C and 25 °C, and the contributions of strain rate sensitivity and strain hardening to independent maxima with temperature of the uniform and post-uniform strains are discussed.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1976
Thomas Swarr; George Krauss
As-quenched and tempered martensite in an Fe-0.2 pct C alloy were subjected to tensile testing and structural characterization by light and transmission electron microscopy. The light temper, 400°C-l min, did not change packet morphology, but did reduce dislocation density, coarsen lath size and cause the precipitation of carbides of a variety of sizes. The yield strength of the as-quenched martensite was strongly dependent upon packet size according to a Hall-Petch relationship, but tempering significantly diminished the packet size dependency, a result attributed to packet boundary carbide precipitation and the attendant elimination of carbon segregation present in the as-quenched martensite because of autotempering. Examination of thin foils from strained tensile specimens showed that a well-defined cell structure developed in the as-quenched martensite, but that the random distribution of jogged dislocations and carbide particles produced by tempering persisted on deformation of the tempered specimens.
Journal of Materials Processing Technology | 2001
David K. Matlock; George Krauss; John G. Speer
Abstract In comparison to conventionally processed quenched-and-tempered steels, direct-cooled microalloy steels offer the potential for significant cost savings. However, direct material substitutions have often been limited based on toughness considerations at the required hardness levels. In an effort to improve toughness, direct-cooled microalloyed forging steels have evolved from precipitation strengthened ferrite–pearlite steels to steels with non-traditional bainitic microstructures that may contain a significant amount of retained austenite. As a consequence of recent developments, the use of direct-cooled microalloyed steels has increased and there is current interest in the use of these steels processed to obtain higher hardness levels. In this paper, processing approaches for the production of direct-cooled forging steels are considered with an emphasis on features that control strength and toughness.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1984
David A. Korzekwa; David K. Matlock; George Krauss
Dislocation structures in the ferrite of a C-Mn-Si dual-phase steel intercritically annealed at 810°C were characterized at various tensile strains by transmission electron microscopy At strains which corresponded to the second stage on a Jaoul-Crussard plot of strain hardening behavior, the dislocation density in the ferrite is inhomogeneous, with a higher density near the martensite. The third stage on a Jaoul-Crussard plot corresponds to the presence of a well-developed dislocation cell structure in the ferrite. The average cell size during this stage is smaller than the minimum size reported for deformed iron, and the cell size was inhomogeneous, with a smaller cell size near the martensite.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1979
James P. Materkowski; George Krauss
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.KIC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1988
D. L. Steinbrunner; David K. Matlock; George Krauss
The effects of martensite volume fraction (MVF) and strain state on necking behavior, post-uniform elongation, and the nucleation and growth of voids in thin sheet dual phase steel, strained in tension, were investigated. Steel containing, in weight percent, 0.08C, 1.45Mn, and 0.21Si, was cold rolled 50 pct and intercritically annealed to produce dual phase microstructures. The effects of MVF were evaluated with a series of constant geometry tensile samples with martensite volume fractions between 5 and 40 pct. The effects of strain state within the neck were evaluated with a series of constant thickness samples with 20 pct MVF and with width variations between 3 and 25 mm. A transition from diffuse to localized necking, as well as a decrease in post-uniform elongation, occurred with both an increase in MVF and sample width. Metallographic analysis of deformed samples revealed that the void nucleation occurs primarily at martensite particles by three distinct mechanisms. The void size and density in the necked region increased toward the fracture surface in all samples and the void density was significantly higher for the samples which exhibited localized necking. However, independent of neck geometry, voids were nucleated uniformly throughout the samples, and were associated with the martensite. The difference in void size and density between the samples with different necking behavior indicates that void growth is a consequence of the strain gradient while the shape of the voids depends on both the strain state and strain gradient. The implications of the void structure analysis are interpreted based on the dual phase microstructure.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1996
S.W. Thompson; D. J. Colvin; George Krauss
Decomposition of fine-grained austenite (10-µm grain size) during continuous cooling of an HSLA-80 plate steel (containing 0.05C, 0.50Mn, 1.12Cu, 0.88Ni, 0.71Cr, and 0.20Mo) was evaluated by dilatometric measurements, light microscopy, scanning electron microscopy, transmission electron microscopy, and microhardness testing. Between 750 °C and 600 °C, austenite transforms primarily to polygonal ferrite over a wide range of cooling rates, and Widmanstätten ferrite sideplates frequently evolve from these crystals. Carbon-enriched islands of austenite transform to a complex mixture of granular ferrite, acicular ferrite, and martensite (all with some degree of retained austenite) at cooling rates greater than approximately 5 °C/s. Granular and acicular ferrite form at temperatures slightly below those at which polygonal and Widmanstätten ferrite form. At cooling rates less than approximately 5 °C/s, regions of carbon-enriched austenite transform to a complex mixture of upper bainite, lower bainite, and martensite (plus retained austenite) at temperatures which are over 100 °C lower than those at which polygonal and Widmanstätten ferrite form. Interphase precipitates of copper form only in association with polygonal and Widmanstätten ferrite. Kinetic and microstruc-tural differences between Widmanstätten ferrite, acicular ferrite, and bainite (both upper and lower) suggest different origins and/or mechanisms of formation for these morphologically similar austenite transformation products.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1992
Yasuharu Sakuma; David K. Matlock; George Krauss
Steels containing 0.15 pct C and 1.2 pct Si-1.5 pct Mn or 4 pct Ni were intercritically annealed and isothermally transformed between 300 °C and 500 °C for 1 to 60 minutes. The specimens were subjected to tensile testing at room temperature, and the microstructures were evaluated by light microscopy, scanning and transmission electron microscopy (SEM and TEM, respectively), and X-ray diffraction (XRD). The microstructures consist of dispersed regions of bainite, martensite, and austenite in a matrix of ferrite, and a maximum of 11.6 pct austenite is retained after isothermal holding at 450 °C in the Si-Mn steel. In specimens where austenite transforms to martensite during quenching after isothermal holding, the stress-strain curves show continuous yielding, high ultimate tensile strength (UTS), and relatively low ductility. In specimens where higher volume fractions of austenite transform to bainite during isothermal holding, the stress-strain curves show discontinuous yielding, low UTS, and high ductility.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 1985
D. Z. Yang; E. L. Brown; David K. Matlock; George Krauss
The recrystallization of ferrite and austenite formation during intercritical annealing were studied in a 0.08C-1.45Mn-0.21Si steel by light and transmission electron microscopy. Normalized specimens were cold rolled 25 and 50 pct and annealed between 650 °C and 760 °C. Recrystallization of the 50 pct deformed ferrite was complete within 30 seconds at 760 °C. Austenite formation initiated concurrently with the ferrite recrystallization and continued beyond complete recrystallization of the ferrite matrix. The recrystallization of the deformed ferrite and the spheroidization of the cementite in the deformed pearlite strongly influence the formation and distribution of austenite produced by intercritical annealing. Austenite forms first at the grain boundaries of unrecrystallized and elongated ferrite grains and the spheroidized cementite colonies associated with ferrite grain boundaries. Spheroidized cementite particles dispersed within recrystallized ferrite grains by deformation and annealing phenomena were the sites for later austenite formation.