George Lambrinidis
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Lambrinidis.
PLOS ONE | 2012
Vasiliki Kosti; George Lambrinidis; Vassilios Myrianthopoulos; George Diallinas; Emmanuel Mikros
Using the crystal structure of the uracil transporter UraA of Escherichia coli, we constructed a 3D model of the Aspergillus nidulans uric acid-xanthine/H+ symporter UapA, which is a prototype member of the Nucleobase-Ascorbate Transporter (NAT) family. The model consists of 14 transmembrane segments (TMSs) divided into a core and a gate domain, the later being distinctly different from that of UraA. By implementing Molecular Mechanics (MM) simulations and quantitative structure-activity relationship (SAR) approaches, we propose a model for the xanthine-UapA complex where the substrate binding site is formed by the polar side chains of residues E356 (TMS8) and Q408 (TMS10) and the backbones of A407 (TMS10) and F155 (TMS3). In addition, our model shows several polar interactions between TMS1-TMS10, TMS1-TMS3, TMS8-TMS10, which seem critical for UapA transport activity. Using extensive docking calculations we identify a cytoplasm-facing substrate trajectory (D360, A363, G411, T416, R417, V463 and A469) connecting the proposed substrate binding site with the cytoplasm, as well as, a possible outward-facing gate leading towards the substrate major binding site. Most importantly, re-evaluation of the plethora of available and analysis of a number of herein constructed UapA mutations strongly supports the UapA structural model. Furthermore, modeling and docking approaches with mammalian NAT homologues provided a molecular rationale on how specificity in this family of carriers might be determined, and further support the importance of selectivity gates acting independently from the major central substrate binding site.
Nature Communications | 2016
Yilmaz Alguel; Sotiris Amillis; James Leung; George Lambrinidis; Stefano Capaldi; Nicola J. Scull; Gregory Craven; So Iwata; Alan Armstrong; Emmanuel Mikros; George Diallinas; Alexander D. Cameron; Bernadette Byrne
The uric acid/xanthine H+ symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1–11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin.
Advanced Drug Delivery Reviews | 2015
George Lambrinidis; Theodosia Vallianatou; Anna Tsantili-Kakoulidou
Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several adverse effects, like low clearance, low brain penetration, drug-drug interactions, loss of efficacy, while influencing the fate of enantiomers and diastereoisomers by stereoselective binding within the body. Therefore in holistic drug design approaches, where ADME(T) properties are considered in parallel with target affinity, considerable efforts are focused in early estimation of PPB mainly in regard to human serum albumin (HSA), which is the most abundant and most important plasma protein. The second critical serum protein α1-acid glycoprotein (AGP), although often underscored, plays also an important and complicated role in clinical therapy and thus the last years it has been studied thoroughly too. In the present review, after an overview of the principles of HSA and AGP binding as well as the structure topology of the proteins, the current trends and perspectives in the field of PPB predictions are presented and discussed considering both HSA and AGP binding. Since however for the latter protein systematic studies have started only the last years, the review focuses mainly to HSA. One part of the review highlights the challenge to develop rapid techniques for HSA and AGP binding simulation and their performance in assessment of PPB. The second part focuses on in silico approaches to predict HSA and AGP binding, analyzing and evaluating structure-based and ligand-based methods, as well as combination of both methods in the aim to exploit the different information and overcome the limitations of each individual approach. Ligand-based methods use the Quantitative Structure-Activity Relationships (QSAR) methodology to establish quantitate models for the prediction of binding constants from molecular descriptors, while they provide only indirect information on binding mechanism. Efforts for the establishment of global models, automated workflows and web-based platforms for PPB predictions are presented and discussed. Structure-based methods relying on the crystal structures of drug-protein complexes provide detailed information on the underlying mechanism but are usually restricted to specific compounds. They are useful to identify the specific binding site while they may be important in investigating drug-drug interactions, related to PPB. Moreover, chemometrics or structure-based modeling may be supported by experimental data a promising integrated alternative strategy for ADME(T) properties optimization. In the case of PPB the use of molecular modeling combined with bioanalytical techniques is frequently used for the investigation of AGP binding.
Expert Opinion on Drug Discovery | 2013
Theodosia Vallianatou; George Lambrinidis; Anna Tsantili-Kakoulidou
Introduction: Binding of drugs to human serum albumin (HSA) strongly influences their pharmacokinetic behavior and is associated with drug safety issues, low clearance, low brain penetration, as well as drug-drug interactions. Thus, in silico prediction of HSA binding contributes significantly to the discovery of new drug candidates. Areas covered: The authors provide a short overview on the principles of HSA binding and the crystal structure of HSA, as well as discussing and analyzing the recent structure- and ligand-based HSA binding models. The authors also present the advantages and limitations of each methodology to construct efficient local or global models and outline the critical structural features contributing to HSA. Expert opinion: The in silico estimation of drug binding to HSA in early drug discovery contributes to the lead optimization process. Local models are useful for the design of new compounds with reduced HSA binding for a particular target receptor, while real-time quantitative structure-activity relationships or global models combining structure- and ligand-based approaches serve for compound libraries screening. However, research efforts on other important plasma proteins should be strengthened in the perspective to enable predictions of total plasma protein binding for clinical candidates.
Bioorganic & Medicinal Chemistry Letters | 2012
Argyro Vontzalidou; Grigoris Zoidis; Eliza Chaita; Maria Makropoulou; Nektarios Aligiannis; George Lambrinidis; Emmanuel Mikros; Alexios-Leandros Skaltsounis
The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid).
Molecular Microbiology | 2014
Emilia Krypotou; George Lambrinidis; Thomas Evangelidis; Emmanuel Mikros; George Diallinas
The AzgA purine/H+ symporter of Aspergillus nidulans is the founding member of a functionally and phylogenetically distinct transporter family present in fungi, bacteria and plants. Here a valid AzgA topological model is built based on the crystal structure of the Escherichia coli uracil transporter UraA, a member of the nucleobase‐ascorbate transporter (NAT/NCS2) family. The model consists of 14 transmembrane, mostly α‐helical, segments (TMSs) and cytoplasmic N‐ and C‐tails. A distinct compact core of 8 TMSs, made of two intertwined inverted repeats (TMSs 1–4 and 8–11), is topologically distinct from a flexible domain (TMSs 5–7 and 12–14). A putative substrate binding cavity is visible between the core and the gate domains. Substrate docking, molecular dynamics and mutational analysis identified several residues critical for purine binding and/or transport in TMS3, TMS8 and TMS10. Among these, Asn131 (TMS3), Asp339 (TMS8) and Glu394 (TMS10) are proposed to directly interact with substrates, while Asp342 (TMS8) might be involved in subsequent substrate translocation, through H+ binding and symport. Thus, AzgA and other NAT transporters use topologically similar TMSs and amino acid residues for substrate binding and transport, which in turn implies that AzgA‐like proteins constitute a distant subgroup of the ubiquitous NAT family.
The Journal of Steroid Biochemistry and Molecular Biology | 2009
Xanthippi Alexi; Konstantinos M. Kasiotis; Nikolaos Fokialakis; George Lambrinidis; Aggeliki K. Meligova; Emmanuel Mikros; Serkos A. Haroutounian; Michael N. Alexis
Several new cycloalkyl-fused diaryl pyrazoles were synthesized and their binding affinity for the estrogen receptor (ER) subtypes, ERalpha and ERbeta, and subtype-specific agonist/antagonist properties were determined. Cyclopentane- and cyclohexane-fused pyrazoles with p-hydroxyphenyl rings at positions 1 and 3 displayed modest ERbeta-binding selectivity and variable agonism through ERalpha, while behaving as full estrogen antagonists through ERbeta in estrogen-responsive element (ERE)-dependent gene expression assays. By contrast, the 2,3-diphenolic derivatives were non-selective and considerably less effective ERbeta antagonists compared to 1,3-diphenolic ones. The cyclohexane-fused 1,3-diphenolic pyrazole 8, in particular, behaved as full ERalpha agonist/ERbeta antagonist in these assays. Molecular modelling revealed the structural determinants possibly accounting for the differential regulation of transcription through the two ERs exhibited by 8. The data also shows that the ER subtype-binding selectivity and agonist/antagonist efficacy of the 1,3-diphenolic pyrazoles is influenced by the cycloalkyl ring fused to the pyrazole core. Using 8 we show that, though the mutant androgen receptor (AR) of LNCaP cells is required for estrogen as well as androgen stimulation of cell growth, estrogen responsiveness of the cells depends on ERbeta and AR but not on ERalpha.
Planta Medica | 2014
Sefirin Djiogue; Maria Halabalaki; Dieudonné Njamen; Georg Kretzschmar; George Lambrinidis; Josephine Hoepping; Francesca Maria Raffaelli; Emmanuel Mikros; Alexios-Leandros Skaltsounis; Günter Vollmer
Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens, four erythroidine alkaloids, namely α-erythroidine, β-erythroidine, and their oxo-derivatives 8-oxo-α-erythroidine and 8-oxo-β-erythroidine, were isolated and structurally characterized from the methanolic extract of the stem bark of E. poeppigiana. Due to the high amounts of erythroidines in the extract and considering the widespread utilization of Erythrina preparations in traditional medicine, the exploration of their estrogenic properties was performed. The estrogenicity of the isolated erythroidines was assayed in various estrogen receptor-(ER)-dependent test systems, including receptor binding affinity, cell culture based ER-dependent reporter gene assays, and gene expression studies in cultured cells using reverse transcription polymerase chain reaction techniques. α-Erythroidine and β-erythroidine showed binding affinity values for ERα of 0.015 ± 0.010% and 0.005 ± 0.010%, respectively, whereas only β-erythroidine bound to ERβ (0.006 ± 0.010%). In reporter gene assays, both erythroidines exhibited a significant dose-dependent estrogenic stimulation of ER-dependent reporter gene activity in osteosarcoma cells detectable already at 10 nM. Results were confirmed in the MVLN cells, a bioluminescent variant of MCF-7 breast cancer cells. Further, α-erythroidine and β-erythroidine both induced the enhanced expression of the specific ERα-dependent genes trefoil factor-1 and serum/glucocorticoid regulated kinase 3 in MCF-7 cells, confirming estrogenicity. Additionally, using molecular docking simulations, a potential mode of binding on ERα, is proposed, supporting the experimental evidences. This is the first time that an estrogenic profile is reported for erythroidine alkaloids, potentially a new class of phytoestrogens.
Steroids | 2007
Zoi Papoutsi; Eva Kassi; Nikolas Fokialakis; Sofia Mitakou; George Lambrinidis; Emmanuel Mikros; Paraskevi Moutsatsou
Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy.
Molecular Informatics | 2013
Theodosia Vallianatou; George Lambrinidis; Costas Giaginis; Emmanuel Mikros; Anna Tsantili-Kakoulidou
In the present study 2D‐QSAR analysis was combined with information on crystallographic data and molecular modeling, in order to investigate dual PPAR‐α/γ activity for a data set of 71 compounds, compiled from literature. Using Multivariate Data Analysis, satisfactory PLS models were generated for each receptor subtype separately. The models were based on simple and easily interpretable drug‐like and constitutional descriptors, while the inclusion of MOLCONN‐Z descriptors in the initial pool of variables had no considerable impact in model predictivity. By simultaneous analysis of both types of activity, a consensus PLS model for dual PPAR‐α/γ activity could be derived, displaying the molecular features, which may lead to a balanced activity. All models were validated by permutation tests, by dividing the data set into training and test sets, as well as by external validation using a blind test set. Detailed inspection of PPAR‐α and PPAR‐γ crystal structures and molecular simulation supported the differentiation of most important descriptors in the separate PLS models, e.g. the higher impact of lipophilicity and bulk descriptors in PPAR‐α and PPAR‐γ activity respectively, as well as the effect of specific structural descriptors. Molecular simulation provided also explanation for the behavior of certain outliers in the PLS models.