Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Lust is active.

Publication


Featured researches published by George Lust.


Journal of Bone and Joint Surgery-british Volume | 2002

Insulin-like growth factor-I enhances cell-based repair of articular cartilage

Lisa A. Fortier; Hussni O. Mohammed; George Lust; Alan J. Nixon

Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness cartilage defects in a model of extensive loss of cartilage in horses. Repairs facilitated with IGF-I and chondrocyte-fibrin composites, or control defects treated with chondrocyte-fibrin composites alone, were compared before death by the clinical appearance and repeated analysis of synovial fluid, and at termination eight months after surgery by tissue morphology, collagen typing, and biochemical assays. The structure of cartilage was evaluated histologically by Toluidine Blue reaction and collagen type-I and type-II in situ hybridisation and immunohistochemistry. Repair tissue was biochemically evaluated by DNA assay, proteoglycan quantitation and characterisation, assessment of collagen by reverse-phase high-performance liquid chromatography, and collagen typing using cyanogen bromide digestion and peptide separation by polyacrylamide gel electrophoresis. The results at eight months showed that the addition of IGF-I to chondrocyte grafts enhanced chondrogenesis in cartilage defects, including incorporation into surrounding cartilage. Gross filling of defects was improved, and the tissue contained a higher proportion of cells producing type-II collagen. Measurements of collagen type II showed improved levels in IGF-I-treated defects, supporting in situ hybridisation and immunohistochemical assessments of the defects. IGF-I improves the repair capabilities of chondrocyte-fibrin grafts in large full-thickness repair models.


Journal of Orthopaedic Research | 2001

Chondrocyte necrosis and apoptosis in impact damaged articular cartilage

Chih Tung Chen; Nancy Burton-Wurster; Caroline Borden; Karsten Hueffer; Stephen E. Bloom; George Lust

A decrease in chondrocyte numbers is one characteristic of osteoarthritic cartilage. This decrease may be the result of apoptosis or other forms of cell death induced by mechanical damage. Furthermore, cell death may contribute to the structural and metabolic changes found in osteoarthritic cartilage. Therefore, we investigated cell viability and the mode of cell death in cartilage subjected to an increasing severity of impact loads expected to cause compositional damage and osteoarthritic‐like metabolic alterations. Canine cartilage explants were subjected to cyclic indentation impacts of 5 megapascals at 0.3 Hz for 0, 2, 20, and 120 min and then kept in culture for 2, 4, 48, and 144 h. Cell death was assessed by the TUNEL assay and by uptake of propidium iodide. Viable cells were detected by the ability to metabolize fluorescein diacetate. Nuclear morphology and ultrastructure of the cell were examined using Hoechst 33342 fluorescent staining and transmission electron microscopy (TEM). As controls for necrosis and apoptosis, cartilage was, respectively, frozen and thawed or incubated with mitomycin‐C, an apoptosis inducer. In cartilage that had been loaded for 2 h, 32% of the chondrocytes in the loaded core took up propidium iodide within 2 h after loading. Most of these were in the middle to superficial zones and reflected leaky cell membranes usually characteristic of necrosis. Less than 1% of these chondrocytes were positive in the TUNEL assay after 4 h. After additional culture for 2 days, however, the proportion of chondrocytes which were positive in the TUNEL assay reached 73%. A dose dependent response to duration of loading was detected with the TUNEL assay at this time. The TUNEL assay was not specific for apoptosis since 92% of chondrocytes in freeze/thawed cartilage were TUNEL positive. However, some cells with apoptotic bodies and chromatin condensation characteristic of apoptosis were found in the transition zone between necrotic and normal chondrocytes, but not in the superficial and upper zones, in impact damaged cartilage. We concluded that in this study, necrosis occurred first, followed by apoptosis.


Journal of Biomechanics | 1997

Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system

Peter A. Torzilli; Rita Grigiene; Charles Huang; Steven M. Friedman; Stephen B. Doty; Adele L. Boskey; George Lust

A new mechanical explant test system was used to study the metabolic response (via proteoglycan biosynthesis) of mature, weight-bearing canine articular cartilage subjected to static and dynamic compressive stresses. Stresses ranging from 0.5 to 24 MPa were applied sinusoidally at 1 Hz for intervals of 2-24 h. The explants were loaded in unconfined compression and compared to age-matched unloaded explants. Both static and dynamic compressive stress significantly decreased proteoglycan biosynthesis (range 25-85%) for all loading time intervals. The inhibition was proportional to the applied stress but was independent of loading time. After rehydration upon load removal, the measured water content of the loaded explants was not different from the unloaded explants for all test variables. Autoradiographic and electron microscopic analysis of loaded explants showed viable chondrocytes throughout the matrix. Our results suggest that the decreased metabolic response of cyclically loaded explants may be dominated by the static component (RMS) of the dynamic load. Furthermore, the observed decreased metabolism may be more representative of the in situ tissue response than that of unloaded explants, in which we found an increasing rate of metabolism for up to 6 days after explant removal.


Journal of Biological Chemistry | 1996

Fibronectin mRNA Splice Variant in Articular Cartilage Lacks Bases Encoding the V, III-15, and I-10 Protein Segments

James N. MacLeod; Nancy Burton-Wurster; Da Nian Gu; George Lust

Fibronectin is an extracellular matrix glycoprotein encoded by a single gene. Alternative RNA splicing has been reported at three sites, ED (extra type III domain)-A, ED-B, and the variable or V region. Articular cartilage fibronectin monomers are rarely (ED-A)+, but approximately 25% are (ED-B)+. RNA gel electrophoresis and Northern blot analysis identified two (ED-B)+ and two (ED-B)− fibronectin transcripts in cartilage, each pair differing by ~750 bases. This difference results from a previously unreported RNA splicing pattern that eliminates not only the V region but also nucleotides encoding protein segments III-15 and I-10. This new splice variant, which we designate (V+C)−, represents the majority of fibronectin transcripts in equine, canine, and rabbit articular cartilage but is absent in the liver. Reverse transcriptase-polymerase chain reaction analyses of 11 additional equine tissues failed to detect the (V+C)− splice variant, except for very low levels in lymph node, bone, aorta, and skin. Furthermore, chondrocytes grown in monolayer culture maintain high levels of fibronectin expression but stop expressing (V+C)− transcripts over time. The tissue-specific expression pattern of this novel fibronectin isoform suggests that it may have an important function in the matrix organization of cartilage.


Mammalian Genome | 2005

Quantitative trait loci for hip dysplasia in a crossbreed canine pedigree

Rory J. Todhunter; R. G. Mateescu; George Lust; Nancy Burton-Wurster; Nathan L. Dykes; Stuart P. Bliss; Alma J. Williams; Margaret Vernier-Singer; Elizabeth Corey; Carlos Harjes; R.L. Quaas; Zhiwu Zhang; Robert O. Gilbert; Dietrich Volkman; George Casella; Rongling Wu; Gregory M. Acland

Canine hip dysplasia is a common developmental inherited trait characterized by hip laxity, subluxation or incongruity of the femoral head and acetabulum in affected hips. The inheritance pattern is complex and the mutations contributing to trait expression are unknown. In the study reported here, 240 microsatellite markers distributed in 38 autosomes and the X chromosome were genotyped on 152 dogs from three generations of a crossbred pedigree based on trait-free Greyhound and dysplastic Labrador Retriever founders. Interval mapping was undertaken to map the QTL underlying the quantitative dysplastic traits of maximum passive hip laxity (the distraction index), the dorsolateral subluxation score, and the Norberg angle. Permutation testing was used to derive the chromosome-wide level of significance at p < 0.05 for each QTL. Chromosomes 4, 9, 10, 11 (p < 0.01), 16, 20, 22, 25, 29 (p < 0.01), 30, 35, and 37 harbor putative QTL for one or more traits. Successful detection of QTL was due to the crossbreed pedigree, multiple-trait measurements, control of environmental background, and marked advancement in canine mapping tools.


Matrix Biology | 1997

Cartilage fibronectin isoforms : In search of functions for a special population of matrix glycoproteins

Nancy Burton-Wurster; George Lust; James N. MacLeod

Fibronectins are a part of the repertoire of matrix molecules produced by the chondrocyte in order to assemble a functional cartilage matrix. They are encoded by a single gene, but significant protein heterogeneity results from alternative RNA splicing. The population of fibronectin isofroms in adult cartilage is significantly different from fibronectins in other tissues and includes relatively high levels (20-30%) of ED-B(+) fibronectins and high levels (50-80%) of the cartilage specific (V + C)- isoform which lacks the V, III-15 and I-10 segments. Less than 4% of the fibronectins in cartilage are ED-A(+). The synthesis and accumulation of cartilage fibronectins are modulated in response to matrix pathology and to biochemical and mechanical mediators. In addition, alternative splicing patterns are altered when chondrocytes are allowed to dedifferentiate in monolayer culture such that the (V + C)- isoform is lost but the ED-A(+) isoform is reexpressed at high levels. Cartilage fibronectins have the potential to participate in cell signalling via integrin mediated pathways and to interact with other cartilage matrix macromolecules. The tissue-specific splicing pattern gives rise to a unique population of fibronectins within the cartilage. Together, this points to a critical role for cartilage fibronectins in chondrocyte cell biology and the organization of a biomechanically sound matrix. However, the precise function (or functions) of the cartilage fibronectins has (or have) not been defined. This minireview examines current information about the structure, synthesis and interactions of cartilage fibronectins. When possible, potential consequences of the inclusion of the ED-B segment or the exclusion of the V, III-15 and I-10 segments are discussed. The goal is to stimulate critical thought and discussion in the field about cartilage fibronectin isoforms, their function(s) in normal cartilage, and their role(s) in the pathogenesis of cartilage diseases.


Biochemical and Biophysical Research Communications | 1982

Fibronectin in osteoarthritic canine articular cartilage

Nancy B. Wurster; George Lust

Abstract A large non-collagenous protein was extracted from degenerated cartilage of osteoarthritic canine joints. Evidence was presented that this protein is fibronectin. It had a molecular weight identical to that of fibronectin isolated from canine serum, required the presence of heparin and urea in the extraction buffer for solubilization, reacted with both polyclonal and monoclonal antibodies to fibronectin in an enzyme-linked immunosorbent assay (ELISA), and exhibited gelatin binding properties. Fibronectin was detected in normal cartilage as well, although in lesser amounts than observed in osteoarthritic cartilage.


Archives of Biochemistry and Biophysics | 1990

Fibronectin and proteoglycan synthesis in long term cultures of cartilage explants in Ham's F12 supplemented with insulin and calcium : effects of the addition of TGF-β

Nancy Burton-Wurster; George Lust

Canine cartilage explants were maintained in a basal medium supplemented with a commercially available supplement (ITSCR+) which includes insulin for up to 12 days in culture. During this time it was found that proteoglycan synthesis, as measured by 35SO4 incorporation into high molecular weight proteoglycans, was maintained at levels comparable to those at Day O. This is in substantial agreement with the results of McQuillan et al. (1) for bovine cartilage explants. Since the basal medium which we used, Hams F12, is low in calcium, we found that supplementation with additional calcium also was needed for maintenance of proteoglycan synthesis. This defined medium was not adequate to prevent a decrease in fibronectin, total protein, and collagen synthesis relative to Day O levels. The addition of transforming growth factor-beta (TGF-beta) at 2 and 10 ng/ml to the defined medium not only prevented the decline in fibronectin synthesis but progressively increased the rate of fibronectin synthesis until the Day O levels were exceeded by an average of fourfold. This TGF-beta-induced increase in fibronectin synthesis was contrasted with the increase in fibronectin synthesis previously reported for degenerated cartilage of osteoarthritic joints (2,3), and possible implications for understanding the disease were discussed.


Biochimica et Biophysica Acta | 1984

Synthesis of fibronectin in normal and osteoarthritic articular cartilage

Nancy B. Wurster; George Lust

The content and the biosynthesis of fibronectin was examined in disease-free articular cartilage and in articular cartilage from osteoarthritic canine joints. Fibronectin content was increased in extracts of cartilage from osteoarthritic joints. Incubation of cartilage in vitro with [3H]phenylalanine and subsequent isolation of [3H]fibronectin from a gelatin affinity column and characterization by SDS-polyacrylamide gel electrophoresis and by immunoprecipitation indicated that disease-free and osteoarthritic cartilage explants synthesized fibronectin. About 50% of the [3H]fibronectin was recovered in the incubation medium. The osteoarthritic cartilage synthesized and accumulated up to 5-fold more [3H]fibronectin than disease-free cartilage.


Genetics | 2007

Linkage and Segregation Analysis of Black and Brindle Coat Color in Domestic Dogs

Julie A. Kerns; Edward J. Cargill; Leigh Anne Clark; Sophie I. Candille; T. G. Berryere; Michael Olivier; George Lust; Rory J. Todhunter; Sheila M. Schmutz; Keith E. Murphy; Gregory S. Barsh

Mutations of pigment type switching have provided basic insight into melanocortin physiology and evolutionary adaptation. In all vertebrates that have been studied to date, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls the switch between synthesis of red–yellow pheomelanin vs. black–brown eumelanin. However, in domestic dogs, historical studies based on pedigree and segregation analysis have suggested that the pigment type-switching system is more complicated and fundamentally different from other mammals. Using a genomewide linkage scan on a Labrador × greyhound cross segregating for black, yellow, and brindle coat colors, we demonstrate that pigment type switching is controlled by an additional gene, the K locus. Our results reveal three alleles with a dominance order of black (KB) > brindle (kbr) > yellow (ky), whose genetic map position on dog chromosome 16 is distinct from the predicted location of other pigmentation genes. Interaction studies reveal that Mc1r is epistatic to variation at Agouti or K and that the epistatic relationship between Agouti and K depends on the alleles being tested. These findings suggest a molecular model for a new component of the melanocortin signaling pathway and reveal how coat-color patterns and pigmentary diversity have been shaped by recent selection.

Collaboration


Dive into the George Lust's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiwu Zhang

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge