Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George M. Giambaşu is active.

Publication


Featured researches published by George M. Giambaşu.


Nucleic Acids Research | 2011

Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA

Rebecca Guza; Delshanee Kotandeniya; Kristopher Murphy; Thakshila Dissanayake; Chen Lin; George M. Giambaşu; Rahul R. Lad; Filip Wojciechowski; Shantu Amin; Shana J. Sturla; Robert H. E. Hudson; Darrin M. York; Ryszard Jankowiak; Roger Jones; Natalia Tretyakova

Endogenous 5-methylcytosine (MeC) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational ‘hotspots’ for smoking induced lung cancer. MeC enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5′-CCCGGCACCC GC[15N3,13C1-G]TCCGCG-3′, + strand) were prepared containing [15N3, 13C1]-guanine opposite unsubstituted cytosine, MeC, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2′-deoxynucleosides, N2-BPDE-dG adducts formed at the [15N3, 13C1]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N2-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE–DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N2 position of guanine.


Journal of Molecular Biology | 2009

Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

Tai-Sung Lee; George M. Giambaşu; Carlos P. Sosa; Monika Martick; William G. Scott; Darrin M. York

The relationship between formation of active in-line attack conformations and monovalent (Na(+)) and divalent (Mg(2+)) metal ion binding in hammerhead ribozyme (HHR) has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of the threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence and in the absence of a Mg(2+) in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the HHR folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of HHR catalysis and support the supposition that Mg(2+), in addition to stabilizing active conformations, plays a specific chemical role in catalysis.


Journal of the American Chemical Society | 2014

Evidence for the role of active site residues in the hairpin ribozyme from molecular simulations along the reaction path.

Hugh Heldenbrand; Pawel A. Janowski; George M. Giambaşu; Timothy J. Giese; Joseph E. Wedekind; Darrin M. York

The hairpin ribozyme accelerates a phosphoryl transfer reaction without catalytic participation of divalent metal ions. Residues A38 and G8 have been implicated as playing roles in general acid and base catalysis, respectively. Here we explore the structure and dynamics of key active site residues using more than 1 μs of molecular dynamics simulations of the hairpin ribozyme at different stages along the catalytic pathway. Analysis of results indicates hydrogen bond interactions between the nucleophile and proR nonbridging oxygen are correlated with active inline attack conformations. Further, the simulation results suggest a possible alternative role for G8 to promote inline fitness and facilitate activation of the nucleophile by hydrogen bonding, although this does not necessarily exclude an additional role as a general base. Finally, we suggest that substitution of G8 with N7- or N3-deazaguanosine which have elevated pKa values, both with and without thio modifications at the 5′ leaving group position, would provide valuable insight into the specific role of G8 in catalysis.


Journal of Physical Chemistry B | 2015

Force Field for Mg2+, Mn2+, Zn2+, and Cd2+ Ions That Have Balanced Interactions with Nucleic Acids

Maria T. Panteva; George M. Giambaşu; Darrin M. York

Divalent metal ions are of fundamental importance to the function and folding of nucleic acids. Divalent metal ion-nucleic acid interactions are complex in nature and include both territorial and site specific binding. Commonly employed nonbonded divalent ion models, however, are often parametrized against bulk ion properties and are subsequently utilized in biomolecular simulations without considering any data related to interactions at specific nucleic acid sites. Previously, we assessed the ability of 17 different nonbonded Mg(2+) ion models to reproduce different properties of Mg(2+) in aqueous solution including radial distribution functions, solvation free energies, water exchange rates, and translational diffusion coefficients. In the present work, we depart from the recently developed 12-6-4 potential models for divalent metal ions developed by Li and Merz and tune the pairwise parameters for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) binding dimethyl phosphate, adenosine, and guanosine in order to reproduce experimental site specific binding free energies derived from potentiometric pH titration data. We further apply these parameters to investigate a metal ion migration previously proposed to occur during the catalytic reaction of the hammerhead ribozyme. The new parameters are shown to be accurate and balanced for nucleic acid binding in comparison with available experimental data and provide an important tool for molecular dynamics and free energy simulations of nucleic acids where these ions may exhibit different binding modes.


Nucleic Acids Research | 2015

Competitive interaction of monovalent cations with DNA from 3D-RISM

George M. Giambaşu; Magdalena Gebala; Maria T. Panteva; Tyler Luchko; David A. Case; Darrin M. York

The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site model (3D-RISM) to reproduce preferential interaction parameters determined from ion counting (IC) experiments for mixed alkali chlorides and dsDNA. Calculations agree well with experiment with slight deviations for salt concentrations >200 mM and capture the observed trend where the extent of cation accumulation around the DNA varies inversely with its ionic size. Ion distributions indicate that the smaller, more competitive cations accumulate to a greater extent near the phosphoryl groups, penetrating deeper into the grooves. In accord with experiment, calculated IC profiles do not vary with sequence, although the predicted ion distributions in the grooves are sequence and ion size dependent. Calculations on other nucleic acid conformations predict that the variation in linear charge density has a minor effect on the extent of cation competition.


Journal of Computational Chemistry | 2015

Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg2+ ion models commonly used in biomolecular simulations

Maria T. Panteva; George M. Giambaşu; Darrin M. York

The prevalence of Mg2+ ions in biology and their essential role in nucleic acid structure and function has motivated the development of various Mg2+ ion models for use in molecular simulations. Currently, the most widely used models in biomolecular simulations represent a nonbonded metal ion as an ion‐centered point charge surrounded by a nonelectrostatic pairwise potential that takes into account dispersion interactions and exchange effects that give rise to the ions excluded volume. One strategy toward developing improved models for biomolecular simulations is to first identify a Mg2+ model that is consistent with the simulation force fields that closely reproduces a range of properties in aqueous solution, and then, in a second step, balance the ion–water and ion–solute interactions by tuning parameters in a pairwise fashion where necessary. The present work addresses the first step in which we compare 17 different nonbonded single‐site Mg2+ ion models with respect to their ability to simultaneously reproduce structural, thermodynamic, kinetic and mass transport properties in aqueous solution. None of the models based on a 12‐6 nonelectrostatic nonbonded potential was able to reproduce the experimental radial distribution function, solvation free energy, exchange barrier and diffusion constant. The models based on a 12‐6‐4 potential offered improvement, and one model in particular, in conjunction with the SPC/E water model, performed exceptionally well for all properties. The results reported here establish useful benchmark calculations for Mg2+ ion models that provide insight into the origin of the behavior in aqueous solution, and may aid in the development of next‐generation models that target specific binding sites in biomolecules.


Journal of the American Chemical Society | 2015

Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings.

Loïc Salmon; George M. Giambaşu; Evgenia N. Nikolova; Katja Petzold; Akash Bhattacharya; David A. Case; Hashim M. Al-Hashimi

Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.


Archive | 2009

UNRAVELING THE MECHANISMS OF RIBOZYME CATALYSIS WITH MULTISCALE SIMULATIONS

Tai-Sung Lee; George M. Giambaşu; Adam Moser; Kwangho Nam; Carlos Silva-Lopez; Francesca Guerra; Olalla Nieto-Faza; Timothy J. Giese; Jiali Gao; Darrin M. York

Description of a multiscale simulation strategy we have developed to attack problems of RNA catalysis is presented. Ribozyme systems give special challenges not present in typical protein systems, and consequently demand new methods. The main methodological components are herein summarized, including the assembly of the QCRNA database, parameterization of the AM1/d-PhoT Hamiltonian, and development of new semiempirical functional forms for improved charge-dependent response properties, methods for coupling many-body exchange, correlation and dispersion into the QM/MM interaction, and generalized methods for linear-scaling electrostatics, solvation and solvent boundary potentials. Results for a series of case studies ranging from noncatalytic reaction models that compare the effect of new DFT functionals, and on catalytic RNA systems including the hairpin, hammerhead and L1 ligase ribozymes are discussed


Journal of the American Chemical Society | 2008

Role of Mg2+ in Hammerhead Ribozyme Catalysis from Molecular Simulation

Tai-Sung Lee; Carlos Silva López; George M. Giambaşu; Monika Martick; William G. Scott; Darrin M. York


Biophysical Journal | 2014

Ion Counting from Explicit-Solvent Simulations and 3D-RISM

George M. Giambaşu; Tyler Luchko; Daniel Herschlag; Darrin M. York; David A. Case

Collaboration


Dive into the George M. Giambaşu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge