Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Mavrothalassitis is active.

Publication


Featured researches published by George Mavrothalassitis.


Oncogene | 2000

Proteins of the ETS family with transcriptional repressor activity

George Mavrothalassitis; Jacques Ghysdael

ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways.


Nature Genetics | 2013

Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis

Stephen R.F. Twigg; Elena Vorgia; Simon J. McGowan; Aimée L. Fenwick; Vikram P Sharma; Maryline Allegra; Andreas Zaragkoulias; Elham Sadighi Akha; Samantha J. L. Knight; Helen Lord; Tracy Lester; Louise Izatt; Anne K Lampe; Shehla Mohammed; Fiona Stewart; Alain Verloes; Louise C. Wilson; Chris Healy; Paul T. Sharpe; Peter Hammond; Jim R. Hughes; Stephen Taylor; David Johnson; Steven A. Wall; George Mavrothalassitis; Andrew O.M. Wilkie

The extracellular signal–related kinases 1 and 2 (ERK1/2) are key proteins mediating mitogen-activated protein kinase signaling downstream of RAS: phosphorylation of ERK1/2 leads to nuclear uptake and modulation of multiple targets. Here, we show that reduced dosage of ERF, which encodes an inhibitory ETS transcription factor directly bound by ERK1/2 (refs. 2,3,4,5,6,7), causes complex craniosynostosis (premature fusion of the cranial sutures) in humans and mice. Features of this newly recognized clinical disorder include multiple-suture synostosis, craniofacial dysmorphism, Chiari malformation and language delay. Mice with functional Erf levels reduced to ∼30% of normal exhibit postnatal multiple-suture synostosis; by contrast, embryonic calvarial development appears mildly delayed. Using chromatin immunoprecipitation in mouse embryonic fibroblasts and high-throughput sequencing, we find that ERF binds preferentially to elements away from promoters that contain RUNX or AP-1 motifs. This work identifies ERF as a novel regulator of osteogenic stimulation by RAS-ERK signaling, potentially by competing with activating ETS factors in multifactor transcriptional complexes.


Molecular and Cellular Biology | 1999

Transcriptional Repressor ERF Is a Ras/Mitogen-Activated Protein Kinase Target That Regulates Cellular Proliferation

Lionel Le Gallic; Dionyssios N. Sgouras; Gregory J. Beal; George Mavrothalassitis

ABSTRACT A limited number of transcription factors have been suggested to be regulated directly by Erks within the Ras/mitogen-activated protein kinase signaling pathway. In this paper we demonstrate that ERF, a ubiquitously expressed transcriptional repressor that belongs to the Ets family, is physically associated with and phosphorylated in vitro and in vivo by Erks. This phosphorylation determines the ERF subcellular localization. Upon mitogenic stimulation, ERF is immediately phosphorylated and exported to the cytoplasm. The export is blocked by specific Erk inhibitors and is abolished when residues undergoing phosphorylation are mutated to alanine. Upon growth factor deprivation, ERF is rapidly dephosphorylated and transported back into the nucleus. Phosphorylation-defective ERF mutations suppress Ras-induced tumorigenicity and arrest the cells at the G0/G1 phase of the cell cycle. Our findings strongly suggest that ERF may be important in the control of cellular proliferation during the G0/G1 transition and that it may be one of the effectors in the mammalian Ras signaling pathway.


Leukemia | 2000

FLI-1 is a suppressor of erythroid differentiation in human hematopoietic cells.

Meropi Athanasiou; George Mavrothalassitis; L Sun-Hoffman; Donald G. Blair

The FLI-1 oncogene, a member of the ETS family of transcription factors, is associated with both normal and abnormal hematopoietic cell growth and lineage-specific differentiation. We have previously shown that overexpression of FLI-1 in pluripotent human hematopoietic cells leads to the induction of a megakaryocytic phenotype. In this report we show that FLI-1 also acts as an inhibitor of erythroid differentiation. Following the induction of erythroid differentiation, pluripotent cells express reduced levels of FLI-1. In contrast, when FLI-1 is overexpressed in these cells, the levels of erythroid markers are reduced. The ability of FLI-1 overexpressing cells to respond to erythroid-specific inducers such as hemin and Ara-C is also inhibited, and the uninduced cells show a reduced level of the erythroid-associated GATA-1 transcription factor mRNA. Furthermore, expression of a GATA-1 promoter-driven reporter construct in K562 cells is inhibited by co-transfection with a construct expressing FLI-1. Our results support the hypothesis that FLI-1 can act both positively and negatively in the regulation of hematopoietic cell differentiation, and that inhibition of GATA-1 expression may contribute to FLI-1-mediated inhibition of erythroid differentiation.


The FASEB Journal | 2012

EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF

Gabi Tarcic; Roi Avraham; Gur Pines; Ido Amit; Tal Shay; Yiling Lu; Yaara Zwang; Menachem Katz; Nir Ben-Chetrit; Jasmine Jacob-Hirsch; Laura Virgilio; Gideon Rechavi; George Mavrothalassitis; Gordon B. Mills; Eytan Domany; Yosef Yarden

The signaling pathways that commit cells to migration are incompletely understood. We employed human mammary cells and two stimuli: epidermal growth factor (EGF), which induced cellular migration, and serum factors, which stimulated cell growth. In addition to strong activation of ERK by EGF, and AKT by serum, early transcription remarkably differed: while EGF induced early growth response‐1 (EGR1), and this was required for migration, serum induced c‐Fos and FosB to enhance proliferation. We demonstrate that induction of EGR1 involves ERK‐mediated down‐regulation of microRNA‐191 and phosphorylation of the ETS2 repressor factor (ERF) repressor, which subsequently leaves the nucleus. Unexpectedly, knockdown of ERF inhibited migration, which implies migratory roles for exported ERF molecules. On the other hand, chromatin immunoprecipitation identified a subset of direct EGR1 targets, including EGR1 autostimulation and SERPINB2, whose transcription is essential for EGF‐induced cell migration. In summary, EGR1 and the EGF‐ERK‐ERF axis emerge from our study as major drivers of growth factor‐induced mammary cell migration.—Tarcic, G., Avraham, R., Pines, G., Amit, I., Shay, T., Lu, Y., Zwang, Y., Katz, M., Ben‐Chetrit, N., Jacob‐Hirsch, J., Virgilio, L., Rechavi, G., Mavrothalassitis, G., Mills, G. B., Domany, E., Yarden, Y. EGR1 and the ERK‐ERF axis drive mammary cell migration in response to EGF. FASEB J. 26, 1582‐1592 (2012). www.fasebj.org


Molecular and Cellular Biology | 2004

ERF Nuclear Shuttling, a Continuous Monitor of Erk Activity That Links It to Cell Cycle Progression

Lionel Le Gallic; Laura Virgilio; Philip Cohen; Benoît Biteau; George Mavrothalassitis

ABSTRACT The ets domain transcriptional repressor ERF is an effector of the receptor tyrosine kinase/Ras/Erk pathway, which, it has been suggested, is regulated by subcellular localization as a result of Erk-dependent phosphorylation and is capable of suppressing cell proliferation and ras-induced tumorigenicity. Here, we analyze the effect of ERF phosphorylation on nuclear import and export, the timing of its phosphorylation and dephosphorylation in relation to its subcellular location, Erk activity, and the requirements for ERF-induced cell cycle arrest. Our findings indicate that ERF continuously shuttles between the nucleus and the cytoplasm and that both phosphorylation and dephosphorylation of ERF occur within the nucleus. While nuclear import is not affected by phosphorylation, ERF nuclear export and cytoplasmic release require multisite phosphorylation and dephosphorylation. ERF export is CRM1 dependent, although ERF does not have a detectable nuclear export signal. ERF phosphorylation and export correlate with the levels of nuclear Erk activity. The cell cycle arrest induced by nonphosphorylated ERF requires the wild-type retinoblastoma protein and can be suppressed by overexpression of cyclin. These data suggest that ERF may be a very sensitive and constant sensor of Erk activity that can affect cell cycle progression through G1, providing another link between the Ras/Erk pathway and cellular proliferation.


Journal of Leukocyte Biology | 2006

Conditional up-regulation of IL-2 production by p38 MAPK inactivation is mediated by increased Erk1/2 activity

Olga Kogkopoulou; Evaggelos Tzakos; George Mavrothalassitis; Cosima T. Baldari; Fotini Paliogianni; Howard A. Young; George Thyphronitis

The p38 mitogen‐activated protein kinase regulates many cellular processes in almost all eukaryotic cell types. In T cells, p38 was shown to regulate thymic development and cytokine production. Here, the role of p38 on interleukin‐2 (IL‐2) production by human peripheral blood CD4+ T cells was examined. When T cells were stimulated under weak stimulation conditions, pharmaceutical and molecular p38 inhibitors induced a dramatic increase of IL‐2 production. In contrast, IL‐2 levels were not affected significantly when strong stimulation was provided to T cells. The increase in IL‐2 production, following p38 inhibition, was associated with a strong up‐regulation of extracellular signal‐regulated kinase (Erk)1/2 activity. Furthermore the Erk inhibitor U0126 was able to counteract the effect of p38 inhibition on IL‐2 production, supporting the conclusion that p38 mediates its effect through Erk. These results suggest that the p38 kinase, through its ability to control Erk activation levels, acts as a gatekeeper, which prevents inappropriate IL‐2 production. Also, the finding that p38 acts in a strength‐of‐stimulation‐dependent way provides an explanation for previously reported, contradictory results regarding the role of this kinase in IL‐2 expression.


Molecular and Cellular Biology | 2007

Transcriptional Repressor Erf Determines Extraembryonic Ectoderm Differentiation

Chara Papadaki; Maria Alexiou; Grace Cecena; Mihalis Verykokakis; Aikaterini Bilitou; James C. Cross; Robert G. Oshima; George Mavrothalassitis

ABSTRACT Extraembryonic ectoderm differentiation and chorioallantoic attachment are fibroblast growth factor (FGF)- and transforming growth factor β-regulated processes that are the first steps in the development of the placenta labyrinth and the establishment of the fetal-maternal circulation in the developing embryo. Only a small number of genes have been demonstrated to be important in trophoblast stem cell differentiation. Erf is a ubiquitously expressed Erk-regulated, ets domain transcriptional repressor expressed throughout embryonic development and adulthood. However, in the developing placenta, after 7.5 days postcoitum (dpc) its expression is restricted to the extraembryonic ectoderm, and its expression is restricted after 9.5 dpc in a subpopulation of labyrinth cells. Homozygous deletion of Erf in mice leads to a block of chorionic cell differentiation before chorioallantoic attachment, resulting in a persisting chorion layer, a persisting ectoplacental cone cavity, failure of chorioallantoic attachment, and absence of labyrinth. These defects result in embryo death by 10.5 dpc. Trophoblast stem cell lines derived from Erfdl1/dl1 knockout blastocysts exhibit delayed differentiation and decreased expression of spongiotrophoblast markers, consistent with the persisting chorion layer, the expanded giant cell layer, and the diminished spongiotrophoblast layer observed in vivo. Our data suggest that attenuation of FGF/Erk signaling and consecutive Erf nuclear localization and function is required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment.


Molecular and Cellular Biology | 1995

ets-1 in Astrocytes: Expression and Transmitter-Evoked Phosphorylation

Laurie F. Fleischman; Lynne A. Holtzclaw; James T. Russell; George Mavrothalassitis; Robert J. Fisher

The ets-1 protein has been primarily studied as a sequence-specific transcriptional regulator that is predominately expressed in lymphoid cells. In this report, we show that ets-1 is also expressed in astrocytes and astrocytoma cells and is regulated during both signal transduction and differentiation. Both isoforms of ets-1, p51 and p42, were found in astrocytes and astrocytoma cells, but whereas expression of p51 was strong, p42, the alternate splice product previously shown to lack the phosphorylation domain, was difficult to detect and was present at a level 10- to 40-fold lower than that of p51. This differed by roughly an order of magnitude from the ratio generally observable in T cells and thymocytes. In two astrocytoma lines of human origin, CCF and 1321N1, ets-1 phosphorylation was stimulated by bradykinin and carbachol, respectively. Glutamate, norepinephrine, and bradykinin elicited phosphorylation of p51 in cultures of primary rat type 1 astrocytes. ets-1 phosphorylation was dramatically blocked by KT5926, an inhibitor of myosin light-chain kinase, suggesting that this kinase may be involved in phosphorylation of ets-1 in vivo. Investigations of retinoic acid-induced differentiation in P19 cells provided further support for a strong correlation of ets-1 with the pathway for astrocyte differentiation.


Journal of Biological Chemistry | 2007

The RAS-dependent ERF Control of Cell Proliferation and Differentiation Is Mediated by c-Myc Repression

Mihalis Verykokakis; Chara Papadaki; Elena Vorgia; Lionel Le Gallic; George Mavrothalassitis

The ERF transcriptional repressor is a downstream effector of the RAS/ERK pathway that interacts with and is directly phosphorylated by ERKs in vivo and in vitro. This phosphorylation results in its cytoplasmic export and inactivation, although lack of ERK activity allows its immediate nuclear accumulation and repressor function. Nuclear ERFs arrest cell cycle progression in G1 and can suppress ras-dependent tumorigenicity. Here we provide evidence that ERF function is mediated by its ability to repress transcription of c-Myc. Promoter reporter assays indicate a DNA binding-dependent and repressor domain-dependent Myc transcriptional repression. Chromatin immunoprecipitations in primary cells suggest that ERF specifically binds on the c-Myc promoter in an E2F4/5-dependent manner and only under conditions that the physiological c-Myc transcription is stopped. Cellular systems overexpressing nuclear ERF exhibit reduced c-Myc mRNA and tumorigenic potential. Elimination of Erf in animal models results in increased c-Myc expression, whereas Erf-/- primary fibroblasts fail to down-regulate Myc in response to growth factor withdrawal. Finally, elimination of c-Myc in primary mouse embryo fibroblasts negates the ability of nuclear ERF to suppress proliferation. Thus Erf provides a direct link between the RAS/ERK signaling and the transcriptional regulation of c-Myc and suggests that RAS/ERK attenuation actively regulates cell fate.

Collaboration


Dive into the George Mavrothalassitis's collaboration.

Top Co-Authors

Avatar

Takis S. Papas

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Robert J. Fisher

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Dennis K. Watson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Meropi Athanasiou

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Beal

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge