Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George McMahon is active.

Publication


Featured researches published by George McMahon.


Nature Genetics | 2013

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila; Bendik S. Winsvold; Padhraig Gormley; Tobias Kurth; Francesco Bettella; George McMahon; Mikko Kallela; Rainer Malik; Boukje de Vries; Gisela M. Terwindt; Sarah E. Medland; Unda Todt; Wendy L. McArdle; Lydia Quaye; Markku Koiranen; M. Arfan Ikram; Terho Lehtimäki; Anine H. Stam; Lannie Ligthart; Juho Wedenoja; Ian Dunham; Benjamin M. Neale; Priit Palta; Eija Hämäläinen; Markus Schuerks; Lynda M. Rose; Julie E. Buring; Paul M. Ridker; Stacy Steinberg; Hreinn Stefansson

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10−8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


Nature Genetics | 2013

A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci

David A. Hinds; George McMahon; Amy K. Kiefer; Chuong B. Do; Nicholas Eriksson; David Evans; Beate St Pourcain; Susan M. Ring; Joanna L. Mountain; Uta Francke; George Davey-Smith; Nicholas J. Timpson; Joyce Y. Tung

Allergic disease is very common and carries substantial public-health burdens. We conducted a meta-analysis of genome-wide associations with self-reported cat, dust-mite and pollen allergies in 53,862 individuals. We used generalized estimating equations to model shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with association P < 5 × 10−8, including 8 loci previously associated with asthma, as well as 4p14 near TLR1, TLR6 and TLR10 (rs2101521, P = 5.3 × 10−21); 6p21.33 near HLA-C and MICA (rs9266772, P = 3.2 × 10−12); 5p13.1 near PTGER4 (rs7720838, P = 8.2 × 10−11); 2q33.1 in PLCL1 (rs10497813, P = 6.1 × 10−10), 3q28 in LPP (rs9860547, P = 1.2 × 10−9); 20q13.2 in NFATC2 (rs6021270, P = 6.9 × 10−9), 4q27 in ADAD1 (rs17388568, P = 3.9 × 10−8); and 14q21.1 near FOXA1 and TTC6 (rs1998359, P = 4.8 × 10−8). We identified one locus with substantial evidence of differences in effects across allergies at 6p21.32 in the class II human leukocyte antigen (HLA) region (rs17533090, P = 1.7 × 10−12), which was strongly associated with cat allergy. Our study sheds new light on the shared etiology of immune and autoimmune disease.


American Journal of Human Genetics | 2012

Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position.

Lavinia Paternoster; Alexei I. Zhurov; Arshed M. Toma; John P. Kemp; Beate St Pourcain; Nicholas J. Timpson; George McMahon; Wendy L. McArdle; Susan M. Ring; George Davey Smith; Stephen Richmond; David Evans

Craniofacial morphology is highly heritable, but little is known about which genetic variants influence normal facial variation in the general population. We aimed to identify genetic variants associated with normal facial variation in a population-based cohort of 15-year-olds from the Avon Longitudinal Study of Parents and Children. 3D high-resolution images were obtained with two laser scanners, these were merged and aligned, and 22 landmarks were identified and their x, y, and z coordinates used to generate 54 3D distances reflecting facial features. 14 principal components (PCs) were also generated from the landmark locations. We carried out genome-wide association analyses of these distances and PCs in 2,185 adolescents and attempted to replicate any significant associations in a further 1,622 participants. In the discovery analysis no associations were observed with the PCs, but we identified four associations with the distances, and one of these, the association between rs7559271 in PAX3 and the nasion to midendocanthion distance (n-men), was replicated (p = 4 × 10(-7)). In a combined analysis, each G allele of rs7559271 was associated with an increase in n-men distance of 0.39 mm (p = 4 × 10(-16)), explaining 1.3% of the variance. Independent associations were observed in both the z (nasion prominence) and y (nasion height) dimensions (p = 9 × 10(-9) and p = 9 × 10(-10), respectively), suggesting that the locus primarily influences growth in the yz plane. Rare variants in PAX3 are known to cause Waardenburg syndrome, which involves deafness, pigmentary abnormalities, and facial characteristics including a broad nasal bridge. Our findings show that common variants within this gene also influence normal craniofacial development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

Cornelius A. Rietveld; Tonu Esko; Gail Davies; Tune H. Pers; Patrick Turley; Beben Benyamin; Christopher F. Chabris; Valur Emilsson; Andrew D. Johnson; James J. Lee; Christiaan de Leeuw; Riccardo E. Marioni; Sarah E. Medland; Michael B. Miller; Olga Rostapshova; Sven J. van der Lee; Anna A. E. Vinkhuyzen; Najaf Amin; Dalton Conley; Jaime Derringer; Cornelia M. van Duijn; Rudolf S. N. Fehrmann; Lude Franke; Edward L. Glaeser; Narelle K. Hansell; Caroline Hayward; William G. Iacono; Carla A. Ibrahim-Verbaas; Vincent W. V. Jaddoe; Juha Karjalainen

Significance We identify several common genetic variants associated with cognitive performance using a two-stage approach: we conduct a genome-wide association study of educational attainment to generate a set of candidates, and then we estimate the association of these variants with cognitive performance. In older Americans, we find that these variants are jointly associated with cognitive health. Bioinformatics analyses implicate a set of genes that is associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. In addition to the substantive contribution, this work also serves to show a proxy-phenotype approach to discovering common genetic variants that is likely to be useful for many phenotypes of interest to social scientists (such as personality traits). We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory.


PLOS ONE | 2011

Genome-Wide Population-Based Association Study of Extremely Overweight Young Adults - The GOYA Study

Lavinia Paternoster; David Evans; Ellen Aagaard Nohr; Claus Holst; Valerie Gaborieau; Paul Brennan; Anette P. Gjesing; Niels Grarup; Daniel R. Witte; Torben Jørgensen; Allan Linneberg; Torsten Lauritzen; Anelli Sandbaek; Torben Hansen; Oluf Pedersen; Katherine S. Elliott; John P. Kemp; Beate St Pourcain; George McMahon; Diana Zelenika; Jörg Hager; Mark Lathrop; Nicholas J. Timpson; George Davey Smith; Thorkild I. A. Sørensen

Background Thirty-two common variants associated with body mass index (BMI) have been identified in genome-wide association studies, explaining ∼1.45% of BMI variation in general population cohorts. We performed a genome-wide association study in a sample of young adults enriched for extremely overweight individuals. We aimed to identify new loci associated with BMI and to ascertain whether using an extreme sampling design would identify the variants known to be associated with BMI in general populations. Methodology/Principal Findings From two large Danish cohorts we selected all extremely overweight young men and women (n = 2,633), and equal numbers of population-based controls (n = 2,740, drawn randomly from the same populations as the extremes, representing ∼212,000 individuals). We followed up novel (at the time of the study) association signals (p<0.001) from the discovery cohort in a genome-wide study of 5,846 Europeans, before attempting to replicate the most strongly associated 28 SNPs in an independent sample of Danish individuals (n = 20,917) and a population-based cohort of 15-year-old British adolescents (n = 2,418). Our discovery analysis identified SNPs at three loci known to be associated with BMI with genome-wide confidence (P<5×10−8; FTO, MC4R and FAIM2). We also found strong evidence of association at the known TMEM18, GNPDA2, SEC16B, TFAP2B, SH2B1 and KCTD15 loci (p<0.001), and nominal association (p<0.05) at a further 8 loci known to be associated with BMI. However, meta-analyses of our discovery and replication cohorts identified no novel associations. Significance Our results indicate that the detectable genetic variation associated with extreme overweight is very similar to that previously found for general BMI. This suggests that population-based study designs with enriched sampling of individuals with the extreme phenotype may be an efficient method for identifying common variants that influence quantitative traits and a valid alternative to genotyping all individuals in large population-based studies, which may require tens of thousands of subjects to achieve similar power.


Journal of Bone and Mineral Research | 2013

META-ANALYSIS OF GENOME-WIDE STUDIES IDENTIFIES WNT16 AND ESR1 SNPS ASSOCIATED WITH BONE MINERAL DENSITY IN PREMENOPAUSAL WOMEN **

Daniel L. Koller; Hou-Feng Zheng; David Karasik; Laura M. Yerges-Armstrong; Ching-Ti Liu; Fiona McGuigan; John P. Kemp; Sylvie Giroux; Dongbing Lai; Howard J. Edenberg; Munro Peacock; Stefan A. Czerwinski; Audrey C. Choh; George McMahon; Beate St Pourcain; Nicholas J. Timpson; Debbie A. Lawlor; David Evans; Bradford Towne; John Blangero; Melanie A. Carless; Candace M. Kammerer; David Goltzman; Christopher S. Kovacs; Jerilynn C. Prior; Tim D. Spector; François Rousseau; Jonathan H Tobias; Kristina Åkesson; Michael J. Econs

Previous genome‐wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta‐analyses of these results have identified numerous single‐nucleotide polymorphisms (SNPs) of modest effect at genome‐wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta‐analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age‐ and weight‐adjusted bone‐mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10−9) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10−8) achieved genome‐wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic‐American, and African‐American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10−11; ESR1/C6orf97 joint p = 1.4 × 10−10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10−5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period.


PLOS Genetics | 2013

Mining the Human Phenome Using Allelic Scores That Index Biological Intermediates

David Evans; Marie-Jo Brion; Lavinia Paternoster; John P. Kemp; George McMahon; Marcus R. Munafò; John Whitfield; Sarah E. Medland; Grant W. Montgomery; Nicholas J. Timpson; Beate St Pourcain; Debbie A. Lawlor; Nicholas G. Martin; Abbas Dehghan; Joel N. Hirschhorn; George Davey Smith

It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approachs properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.


American Journal of Medical Genetics | 2016

A Genome-Wide Approach to Children's Aggressive Behavior: The EAGLE consortium

Irene Pappa; Beate St Pourcain; Kelly S. Benke; Alana Cavadino; Christian Hakulinen; Michel G. Nivard; Ilja M. Nolte; Carla M.T. Tiesler; Marian J. Bakermans-Kranenburg; Gareth E. Davies; David Evans; Marie-Claude Geoffroy; Harald Grallert; Maria M. Groen-Blokhuis; James J. Hudziak; John P. Kemp; Liisa Keltikangas-Järvinen; George McMahon; Viara R. Mileva-Seitz; Ehsan Motazedi; Christine Power; Olli T. Raitakari; Susan M. Ring; Fernando Rivadeneira; Alina Rodriguez; Paul Scheet; Ilkka Seppälä; Harold Snieder; Marie Standl; Elisabeth Thiering

Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome‐wide approaches of aggressive behavior in children. We analyzed data from nine population‐based studies and assessed aggressive behavior using well‐validated parent‐reported questionnaires. This is the largest sample exploring childrens aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of childrens aggressive behavior based on genome‐wide SNP information, using genome‐wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi‐Poisson regression approach, capturing the highly right‐skewed distribution of aggressive behavior. Third, we performed meta‐analyses of genome‐wide associations for both the total age‐mixed sample and the two developmental stages. Finally, we performed a gene‐based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10–54%). The meta‐analysis of the total sample identified one region in chromosome 2 (2p12) at near genome‐wide significance (top SNP rs11126630, P = 5.30 × 10−8). The separate meta‐analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene‐based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning.


Investigative Ophthalmology & Visual Science | 2014

Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort

Jeremy Andrew Guggenheim; Cathy Williams; Kate Northstone; Laura D Howe; Kate Tilling; Beate St Pourcain; George McMahon; Debbie A. Lawlor

PURPOSE More time outdoors is associated with a lesser risk of myopia, but the underlying mechanism is unclear. We tested the hypothesis that 25-hydroxyvitamin D (vitamin D) mediates the protective effects of time outdoors against myopia. METHODS We analyzed data for children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) population-based birth cohort: noncycloplegic autorefraction at age 7 to 15 years; maternal report of time outdoors at age 8 years and serum vitamin D2 and D3 at age 10 years. A survival analysis hazard ratio (HR) for incident myopia was calculated for children spending a high- versus low-time outdoors, before and after controlling for vitamin D level (N = 3677). RESULTS Total vitamin D and D3, but not D2, levels were higher in children who spent more time outdoors (mean [95% confidence interval (CI)] vitamin D in nmol/L: Total, 60.0 [59.4-60.6] vs. 56.9 [55.0-58.8], P = 0.001; D3, 55.4 [54.9-56.0] vs. 53.0 [51.3-54.9], P = 0.014; D2, 5.7 [5.5-5.8] vs. 5.4 [5.1-5.8], P = 0.23). In models including both time outdoors and sunlight-exposure-related vitamin D, there was no independent association between vitamin D and incident myopia (Total, HR = 0.83 [0.66-1.04], P = 0.11; D3, HR = 0.89 [0.72-1.10], P = 0.30), while time outdoors retained the same strong negative association with incident myopia as in unadjusted models (HR = 0.69 [0.55-0.86], P = 0.001). CONCLUSIONS Total vitamin D and D3 were biomarkers for time spent outdoors, however there was no evidence they were independently associated with future myopia.


Investigative Ophthalmology & Visual Science | 2014

Does vitamin D mediate the protective effects of time outdoors on myopia

Jeremy Andrew Guggenheim; Cathy Williams; Kate Northstone; Laura D Howe; Kate Tilling; M U B St Pourcain; George McMahon; Debbie A. Lawlor

PURPOSE More time outdoors is associated with a lesser risk of myopia, but the underlying mechanism is unclear. We tested the hypothesis that 25-hydroxyvitamin D (vitamin D) mediates the protective effects of time outdoors against myopia. METHODS We analyzed data for children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) population-based birth cohort: noncycloplegic autorefraction at age 7 to 15 years; maternal report of time outdoors at age 8 years and serum vitamin D2 and D3 at age 10 years. A survival analysis hazard ratio (HR) for incident myopia was calculated for children spending a high- versus low-time outdoors, before and after controlling for vitamin D level (N = 3677). RESULTS Total vitamin D and D3, but not D2, levels were higher in children who spent more time outdoors (mean [95% confidence interval (CI)] vitamin D in nmol/L: Total, 60.0 [59.4-60.6] vs. 56.9 [55.0-58.8], P = 0.001; D3, 55.4 [54.9-56.0] vs. 53.0 [51.3-54.9], P = 0.014; D2, 5.7 [5.5-5.8] vs. 5.4 [5.1-5.8], P = 0.23). In models including both time outdoors and sunlight-exposure-related vitamin D, there was no independent association between vitamin D and incident myopia (Total, HR = 0.83 [0.66-1.04], P = 0.11; D3, HR = 0.89 [0.72-1.10], P = 0.30), while time outdoors retained the same strong negative association with incident myopia as in unadjusted models (HR = 0.69 [0.55-0.86], P = 0.001). CONCLUSIONS Total vitamin D and D3 were biomarkers for time spent outdoors, however there was no evidence they were independently associated with future myopia.

Collaboration


Dive into the George McMahon's collaboration.

Top Co-Authors

Avatar

David Evans

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge