Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Perides is active.

Publication


Featured researches published by George Perides.


Nature Immunology | 2007

'Role reversal' for the receptor PAR1 in sepsis-induced vascular damage

Nicole C. Kaneider; Andrew J. Leger; Anika Agarwal; Nga Nguyen; George Perides; Lidija Covic; Athan Kuliopulos

Sepsis is a deadly disease characterized by considerable derangement of the proinflammatory, anti-inflammatory and coagulation responses. Protease-activated receptor 1 (PAR1), an important regulator of endothelial barrier function and blood coagulation, has been proposed to be involved in the lethal sequelae of sepsis, but it is unknown whether activation of PAR1 is beneficial or harmful. Using a cell-penetrating peptide (pepducin) approach, we provide evidence that PAR1 switched from being a vascular-disruptive receptor to a vascular-protective receptor during the progression of sepsis in mice. Unexpectedly, we found that the protective effects of PAR1 required transactivation of PAR2 signaling pathways. Our results suggest therapeutics that selectively activate PAR1-PAR2 complexes may be beneficial in the treatment of sepsis.


Neuro-oncology | 2006

Targeting of melanoma brain metastases using engineered neural stem/progenitor cells

Karen S. Aboody; Joseph Najbauer; Nils Ole Schmidt; Wendy Yang; Julian K. Wu; Yuzheng Zhuge; Wojciech Przylecki; Rona S. Carroll; Peter McL. Black; George Perides

Brain metastases are an increasingly frequent and serious clinical problem for cancer patients, especially those with advanced melanoma. Given the extensive tropism of neural stem/progenitor cells (NSPCs) for pathological areas in the central nervous system, we expanded investigations to determine whether NSPCs could also target multiple sites of brain metastases in a syngeneic experimental melanoma model. Using cytosine deaminase-expressing NSPCs (CD-NSPCs) and systemic 5-fluorocytosine (5-FC) pro-drug administration, we explored their potential as a cell-based targeted drug delivery system to disseminated brain metastases. Our results indicate a strong tropism of NSPCs for intracerebral melanoma metastases. Furthermore, in our therapeutic paradigm, animals with established melanoma brain metastasis received intracranial implantation of CD-NSPCs followed by systemic 5-FC treatment, resulting in a significant (71%) reduction in tumor burden. These data provide proof of principle for the use of NSPCs for targeted delivery of therapeutic gene products to melanoma brain metastases.


Infection and Immunity | 2005

Borrelia burgdorferi, Host-Derived Proteases, and the Blood-Brain Barrier

Dennis J. Grab; George Perides; J. Stephen Dumler; Kee Jun Kim; Jinho Park; Yuri V. Kim; Olga V. Nikolskaia; Kyoung Seong Choi; Monique F. Stins; Kwang Sik Kim

ABSTRACT Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS.


Cancer | 1998

Specific matrix metalloproteinase profiles in the cerebrospinal fluid correlated with the presence of malignant astrocytomas, brain metastases, and carcinomatous meningitis

Marc H. Friedberg M.D.; Michael J. Glantz; Mark S. Klempner; Bernard F. Cole; George Perides

Detection in tumor tissue of specific matrix metalloproteinases (MMPs), particularly gelatinases A and B, correlates with the grade and aggressiveness of primary and metastatic brain tumors. The ability to detect these enzymes in the cerebrospinal fluid (CSF) would be a minimally invasive method of evaluating brain tumors.


Gut | 2005

A mouse model of ethanol dependent pancreatic fibrosis

George Perides; Xiaohong Tao; Nathaniel West; Anupriya Sharma; Michael L. Steer

Background and aim: The majority of patients with chronic pancreatitis are alcoholics. Our goal was to develop a mouse model of alcohol dependent chronic pancreatitis. Methods: Mice were fed either the non-alcohol containing Lieber-DeCarli diet or the Lieber-DeCarli diet containing 24% of calories as ethanol. After eight weeks and while on their respective diets, mice were subjected to repeated episodes of acute pancreatitis elicited by administration of caerulein. They were sacrificed 1, 3, and 5 weeks after the last dose of caerulein. Pancreatic morphology and collagen deposition were evaluated in samples stained with haematoxylin-eosin and Sirius red. Collagen content was quantitated by measuring OH-proline. Gene expression was determined by quantitative polymerase chain reaction. Results: Both groups of mice gained weight at the same rate. Those receiving the alcohol containing diet had serum alcohol levels of approximately 100 mM. No histological or gene expression differences were found in mice that were not subjected to acute pancreatitis, regardless of their diet. Necrosis, Sirius red staining, OH-proline content, and expression of α-1 collagen I, α-smooth muscle actin, transforming growth factor β1, and tissue inhibitor of metalloproteinase 1 were all increased in mice fed the alcohol containing diet and given caerulein compared with those fed the control diet and given caerulein. Matrix metalloproteinase 9 expression was transiently decreased in mice fed ethanol and given caerulein compared with the group given caerulein but not fed ethanol. Conclusion: We have developed a mouse model of alcohol dependent chronic pancreatic fibrosis. This mouse model may be useful in studies examining the effects of genetic manipulation on chronic pancreatitis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins.

Leila M. Sevigny; Ping Zhang; Andrew Bohm; Katherine Lazarides; George Perides; Lidija Covic; Athan Kuliopulos

Protease-activated receptor-2 (PAR2), a cell surface receptor for trypsin-like proteases, plays a key role in a number of acute and chronic inflammatory diseases of the joints, lungs, brain, gastrointestinal tract, and vascular systems. Despite considerable effort by the pharmaceutical industry, PAR2 has proven recalcitrant to targeting by small molecule inhibitors, which have been unable to effectively prevent the interaction of the protease-generated tethered ligand with the body of the receptor. Here, we report the development of first-in-class cell-penetrating lipopeptide “pepducin” antagonists of PAR2. The design of the third intracellular (i3) loop pepducins were based on a structural model of a PAR2 dimer and by mutating key pharmacophores in the receptor intracellular loops and analogous pepducins. Individual pharmacophores were identified, which controlled constitutive, agonist, and antagonist activities. This approach culminated in the identification of the P2pal-18S pepducin which completely suppressed trypsin and mast cell tryptase signaling through PAR2 in neutrophils and colon cancer cells. The PAR2 pepducin was highly efficacious in blocking PAR2-dependent inflammatory responses in mouse models. These effects were lost in PAR2-deficient and mast-cell–deficient mice, thereby validating the specificity of the pepducin in vivo. These data provide proof of concept that PAR2 pepducin antagonists may afford effective treatments of potentially debilitating inflammatory diseases and serve as a blueprint for developing highly potent and specific i3-loop–based pepducins for other G protein-coupled receptors (GPCRs).


Gut | 2007

A mouse model of acute biliary pancreatitis induced by retrograde pancreatic duct infusion of na-taurocholate

Johanna M. Laukkarinen; Gijs J.D. Van Acker; Michael L. Steer; George Perides

Objective: Most mechanistic studies of pancreatitis in mice employ the secretagogue-induced model. The currently reported studies were designed to develop an alternative, and possibly more clinically relevant, mouse model of pancreatitis. Design: Na-taurocholate (10–50 &mgr;l, 1–5%) in saline, or saline alone, was retrogradely infused into the mouse pancreatic duct. The animals were killed 6–24 hours later and the severity of pancreatitis in the pancreatic head and tail was examined by quantitating hyperamylasemia, pancreatic edema, acinar cell necrosis, and pancreatic inflammation. In addition, intrapancreatic activation of trypsinogen, generation of IL-6, intrapulmonary sequestration of neutrophils, and alterations in lung compliance were evaluated. The effects of Na-taurocholate on in-vitro acinar cell calcium transients, viability, and trypsinogen activation were examined. Results: Little or no evidence of pancreatitis was observed in mice infused with saline alone or in the tail of pancreata removed from animals infused with Na-taurocholate. In the head of the pancreas, evidence of pancreatitis was observed 12–24 hours after infusion of 20–50 &mgr;l 2–5% Na-taurocholate and the earliest morphological changes involved terminal duct and acinar cells. Intrapancreatic trypsin activity was transiently elevated within 5 minutes of Na-taurocholate infusion and pancreatic IL-6 levels were elevated 24 hours later. Under in-vitro conditions, Na-taurocholate triggered pathological acinar cell calcium transients, cell death, and calcium-dependent trypsinogen activation. Conclusion: This clinically relevant model of acute biliary pancreatitis yields reproducible results and its severity can be easily manipulated. It is ideally suited for use in mechanistic studies employing genetically modified mouse strains.


Nature Protocols | 2010

Experimental acute biliary pancreatitis induced by retrograde infusion of bile acids into the mouse pancreatic duct.

George Perides; Gijs Jd Van Acker; Johanna M. Laukkarinen; Michael L. Steer

Mechanistic studies of acute pancreatitis require animal models because clinical material is generally not available during the early phases of the disease. Here we describe a protocol to induce biliary pancreatitis by retrogradely infusing bile acids into the pancreatic duct of anesthetized mice. The resulting model replicates events believed to be responsible for the onset of clinical biliary (i.e., gallstone) pancreatitis and creates highly reproducible pancreatitis with a severity that depends on the concentration of infused bile acid. Pancreatitis reaches its maximal level of severity within 24 h of induction, and it resolves over the subsequent week. This protocol enables the investigator to use genetically modified strains of mice, and it requires only relatively simple and easily learned techniques of small animal surgery. With practice and gentle technique, the surgery (from induction of anesthesia to completion of the infusion) can be completed within 25 min per animal.


Infection and Immunity | 2006

MyD88 Deficiency Results in Tissue-Specific Changes in Cytokine Induction and Inflammation in Interleukin-18-Independent Mice Infected with Borrelia burgdorferi

Aruna K. Behera; Ethan Hildebrand; Roderick T. Bronson; George Perides; Satoshi Uematsu; Shizuo Akira; Linden T. Hu

ABSTRACT Toll-like receptors (TLRs) play an important role in the control of infection with Borrelia burgdorferi. Deficiencies in TLR-2 or the shared TLR adapter molecule MyD88 have been shown to result in greatly increased bacterial burdens in mice. However, although in vitro studies have shown that the activation of TLR pathways by B. burgdorferi results in the release of inflammatory cytokines, studies in deficient mice have shown either no change or increased rather than decreased inflammation in infected animals. In this study, we looked at mechanisms to explain the increase in inflammation in the absence of MyD88. We found that MyD88-deficient mice infected with B. burgdorferi did not show increased inflammation at sites typically associated with Lyme disease (joints and heart). However, there was markedly increased inflammation in the muscles, kidneys, pancreas, and lungs of deficient animals. Muscle inflammation was typically seen perivascularly and perineuronally similar to that seen in infected humans. Chemotactic chemokines and cytokines were greatly increased in the muscle and kidneys of MyD88-deficient animals but not in the joints or heart tissue, suggesting that MyD88-independent pathways for recognizing B. burgdorferi and inducing these chemokines are present in the muscle and kidneys. Interleukin-18 signaling through MyD88 does not appear to play a role in either control of infection or inflammation.


Circulation | 2013

Mechanically Unloading the Left Ventricle Before Coronary Reperfusion Reduces Left Ventricular Wall Stress and Myocardial Infarct Size

Navin K. Kapur; Vikram Paruchuri; Jose Angel Urbano-Morales; Emily E. Mackey; Gerard H. Daly; Xiaoying Qiao; Natesa G. Pandian; George Perides; Richard H. Karas

Background— Ischemia/reperfusion injury worsens infarct size, a major determinant of morbidity and mortality after acute myocardial infarction (MI). We tested the hypothesis that reducing left ventricular wall stress with a percutaneous left atrial-to-femoral artery centrifugal bypass system while delaying coronary reperfusion limits myocardial injury in a model of acute MI. Methods and Results— MI was induced by balloon occlusion of the left anterior descending artery in adult male swine. In the MI group (n=4), 120 minutes of left anterior descending artery occlusion was followed by 120 minutes of reperfusion without mechanical support. In the mechanically supported group (MI+unload; n=4), percutaneous left atrial–to–femoral artery bypass was initiated after 120 minutes of ischemia, and left anterior descending artery occlusion was prolonged for an additional 30 minutes, followed by 120 minutes of reperfusion with device support. All animals were euthanized after reperfusion, and infarct size was quantified by triphenyltetrazolium chloride staining. Compared with baseline, mean left ventricular wall stress and stroke work were not changed at any point in the MI group but were decreased after reperfusion in the MI+unload group (mean left ventricular wall stress, 44 658 versus 22 963 dynes/cm2; stroke work, 2823 versus 655 mm Hg·mL, MI versus MI+unload). Phosphorylation of reperfusion injury salvage kinase pathway proteins from noninfarcted left ventricular tissue was unchanged in the MI group but was increased in the MI+unload group. Compared with the MI group, total infarct size was reduced in the MI+unload group (49% versus 28%, MI versus MI+unload). Conclusions— These data support that first unloading the left ventricle despite delaying coronary reperfusion during an acute MI reduces myocardial injury.

Collaboration


Dive into the George Perides's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Klempner

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Gijs J.D. Van Acker

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge