George Priya Doss C
VIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Priya Doss C.
Current Drug Targets | 2013
Chiranjib Chakraborty; George Priya Doss C; Sanghamitra Bandyopadhyay
The predominance of insulin resistance, T2D linked pancreatic cancer has increased throughout the world. The insulin/IGF signaling pathway related to insulin resistance, T2D and pancreatic cancer has been described. In this context, we have demonstrated the role of miRNAs in cancer progression and control of miRNAs in insulin/IGF signaling pathway, and pancreatic cancer. In this paper, an overview was depicted about the role of following miRNAs in pancreatic development and insulin secretion (miR-375, miR-7, miR-124a2, miR-195, miR-126, miR-9, miR-96, miR-34a); insulingrowth factor-1 receptor expression (miR-7, miR-139, miR-145, miR-1); the diabetes-associated pancreatic cancer pathway genes such as IRS, PI3K, AKT/PKB (miR-128a, miR-19a, miR-21, miR-29 a/b/c); mTOR protein regulation (miR- 99, miR-21, miR-126, and miR-146a) etc. At last, we have also explained the role of miRNAs in diagnostic marker (miR- 200, miR-21, miR-103, miR-107, and miR-155) and as a therapeutic modulator (miR-34, miR-21, miR-221, and miR-101) in pancreatic cancer.
PLOS ONE | 2014
Sripriyalakshmi. S; Anjali. C. H; George Priya Doss C; B. Rajith; Aswathy Ravindran
Background Currently, the discovery of effective chemotherapeutic agents poses a major challenge to the field of cancer biology. The present study focuses on enhancing the therapeutic and anti cancer properties of atorvastatin calcium loaded BSA (ATV-BSA) nanoparticles in vitro. Methodology/Results BSA-ATV nanoparticles were prepared using desolvation technique. The process parameters were optimized based on the amount of desolvating agent, stabilization conditions as well as the concentration of the cross linker. The anti cancer properties of the protein coated ATV nanoparticles were tested on MiaPaCa-2 cell lines. In vitro release behavior of the drug from the carrier suggests that about 85% of the drug gets released after 72 hrs. Our studies show that ATV-BSA nanoparticles showed specific targeting and enhanced cytotoxicity to MiaPaCa-2 cells when compared to the bare ATV. Conclusion We hereby propose that the possible mechanism of cellular uptake of albumin bound ATV could be through caveolin mediated endocytosis. Hence our studies open up new facet for an existing cholesterol drug as a potent anti-cancer agent.
PLOS ONE | 2011
B. Rajith; George Priya Doss C
Background A major area of effort in current genomics is to distinguish mutations that are functionally neutral from those that contribute to disease. Single Nucleotide Polymorphisms (SNPs) are amino acid substitutions that currently account for approximately half of the known gene lesions responsible for human inherited diseases. As a result, the prediction of non-synonymous SNPs (nsSNPs) that affect protein functions and relate to disease is an important task. Principal Findings In this study, we performed a comprehensive analysis of deleterious SNPs at both functional and structural level in the respective genes associated with red blood cell metabolism disorders using bioinformatics tools. We analyzed the variants in Glucose-6-phosphate dehydrogenase (G6PD) and isoforms of Pyruvate Kinase (PKLR & PKM2) genes responsible for major red blood cell disorders. Deleterious nsSNPs were categorized based on empirical rule and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for evaluation of protein structure stability. Significance We argue here that bioinformatics tools can play an important role in addressing the complexity of the underlying genetic basis of Red Blood Cell disorders. Based on our investigation, we report here the potential candidate SNPs, for future studies in human Red Blood Cell disorders. Current study also demonstrates the presence of other deleterious mutations and also endorses with in vivo experimental studies. Our approach will present the application of computational tools in understanding functional variation from the perspective of structure, expression, evolution and phenotype.
PLOS ONE | 2015
Nagasundaram N; Hailong Zhu; Jiming Liu; Karthick; George Priya Doss C; Chiranjib Chakraborty; Luonan Chen
The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.
Journal of Cellular Biochemistry | 2017
Sneha P; Kumar Thirumal D; Himani Tanwar; Ramamoorthy Siva; George Priya Doss C; Hatem Zayed
Larsen syndrome (LRS) is a rare genetic disease associated with variable manifestations including skeletal malformations, dislocations of the large joints, and notable changes in facial and limb features. Genetic variants in the Filamin B (FLNB) gene are associated with the development of LRS. We searched two literature databases (OMIM and PubMed) and three gene variant databases (HGMD, UniProt, & dbSNP) to capture all the possible variants associated with LRS phenotype, which may have an impact on the FLNB function. Our search yielded 77 variants that might impact the FLNB protein function in patients with LRS. We performed rigorous computational analysis such as conservational, biochemical, pathogenicity, and structural computational analyses to understand the deleterious effect of the G1691S variant. Further, the structural changes of the G1691S variant was compared with a null variant (G1691A) and the native protein through a molecular dynamic simulation study of 50 ns. We found that the variant G1691S was highly deleterious and destabilize the protein when compared to the native and variant G1691A. This might be due to the physicochemical changes in the variant G1691S when compared to the native and variant G1691A. The destabilization was further supported by transformation of bend to coil in variant G1691S whereas bend was retained in native and variant G1691A through molecular dynamics analysis. Our study shed light on the importance of computational methods to understand the molecular nature of genetic variants and structural insights on the function of the FLNB protein. J. Cell. Biochem. 118: 1900–1910, 2017.
PLOS ONE | 2013
Anulekha John; George Priya Doss C; Andrew Ebenazer; M. S. Seshadri; Aravindan Nair; Simon Rajaratnam; Rekha Pai
Various missense mutations in the VHL gene have been reported among patients with familial bilateral pheochromocytoma. However, the p.Arg82Leu mutation in the VHL gene described here among patients with familial bilateral pheochromocytoma, has never been reported previously in a germline configuration. Interestingly, long-term follow-up of these patients indicated that the mutation might have had little impact on the normal function of the VHL gene, since all of them have remained asymptomatic. We further attempted to correlate this information with the results obtained by in silico analysis of this mutation using SIFT, PhD-SNP SVM profile, MutPred, PolyPhen2, and SNPs&GO prediction tools. To gain, new mechanistic insight into the structural effect, we mapped the mutation on to 3D structure (PDB ID 1LM8). Further, we analyzed the structural level changes in time scale level with respect to native and mutant protein complexes by using 12 ns molecular dynamics simulation method. Though these methods predict the mutation to have a pathogenic potential, it remains to be seen if these patients will eventually develop symptomatic disease.
Genome Announcements | 2016
Chaitra Shankar; Laura E. B. Nabarro; Naveen Kumar Devanga Ragupathi; Dhiviya Prabaa Muthuirulandi Sethuvel; Jones Lionel Kumar Daniel; George Priya Doss C; Balaji Veeraraghavan
ABSTRACT Hypervirulent Klebsiella pneumoniae strains have been increasingly reported worldwide, and there is emergence of carbapenem resistance among them. Here, we report the genome sequences of three carbapenem-resistant hypervirulent K. pneumoniae isolates isolated from bacteremic patients at a tertiary-care center in South India.
Journal of Theoretical Biology | 2018
Ashish Kumar Agrahari; Amit Kumar; Ramamoorthy Siva; Hatem Zayed; George Priya Doss C
X-linked Charcot-Marie-Tooth type 1 X (CMTX1) disease is a subtype of Charcot-Marie-Tooth (CMT), which is mainly caused by mutations in the GJB1 gene. It is also known as connexin 32 (Cx32) that leads to Schwann cell abnormalities and peripheral neuropathy. CMTX1 is considered as the second most common form of CMT disease. The aim of this study is to computationally predict the potential impact of different single amino acid substitutions at position 75 of Cx32, from arginine (R) to proline (P), glutamine (Q) and tryptophan (W). This position is known to be highly conserved among the family of connexin. To understand the structural and functional changes due to these single amino acid substitutions, we employed a homology-modeling technique to build the three-dimensional structure models for the native and mutant proteins. The protein structures were further embedded into a POPC lipid bilayer, inserted into a water box, and subjected to molecular dynamics simulation for 50 ns. Our results show that the mutants R75P, R75Q and R75W display variable structural conformation and dynamic behavior compared to the native protein. Our data proves useful in predicting the potential pathogenicity of the mutant proteins and is expected to serve as a platform for drug discovery for patients with CMT.
Applied Biochemistry and Biotechnology | 2014
George Priya Doss C; Nagasundaram N
Excision repair cross complementation group 1 (ERCC1) is an important protein in the nucleotide excision repair (NER) pathway, which is responsible for removing DNA adducts induced by platinum based compounds. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Genetic variations or polymorphisms in ERCC1 gene alter DNA repair capacity. Reduced DNA repair (NER) capacity may result in tumors and enhances cisplatin chemotherapy in cancer patients, which functions by causing DNA damage. Therefore, ERCC1 variants have the potential to be used as a strong candidate biomarker in cancer treatments. In this study we identified five variants V116M, R156Q, A199T, S267P, and R322C of ERCC1 gene as highly deleterious. Further structural and functional analysis has been conducted for ERCC1 protein in the presence of three variants V116M, R156Q, and A199T. Occurrence of theses variations adversely affected the regular interaction between ERCC1 and XPF protein. Analysis of 20 ns molecular dynamics simulation trajectories reveals that the predicted deleterious variants altered the ERCC1-XPF complex stability, flexibility, and surface area. Notably, the number of hydrogen bonds in ERCC1-XPF mutant complexes decreased in the molecular dynamic simulation periods. Overall, this study explores the link between the ERCC1 deleterious variants and cisplatin chemotherapy for various cancers with the help of molecular docking and molecular dynamic approaches.
Applied Biochemistry and Biotechnology | 2013
George Priya Doss C; B. Rajith; Chiranjib Chakraborty
Fibroblast growth factor receptor 2 (FGFR2) controls a wide range of biological functions by regulating the cellular proliferation, survival, migration and differentiation. A growing body of preclinical data demonstrated that deregulation of the FGFR signalling through genetic modification was observed in various types of cancers. However, the extent to which genetic modifications interfere with gene regulation and their involvement in cancer susceptibility remains largely unknown. In this work, we performed in silico profiling of harmful non-synonymous single nucleotide polymorphisms (SNPs) in the protein kinase domain of FGFR2. Tolerance index, position-specific independent count score, change in free energy score (ΔΔG), Eris and FoldX indicated that seven mutations were found to be deleterious and may alter the protein function and structure. Furthermore, based on physico-chemical properties, two mutations K659N and R747H were found to be most deleterious in protein kinase domain and taken for further structural analysis. Docking study showed a complete loss of binding affinity followed by interference in hydrogen bonding and surrounding residues due to K659N and R747H mutations. In order to elucidate the mechanism behind the impact of mutation that can generate a ripple effect throughout the protein structure and ultimately affect the function, in-depth molecular dynamics simulation and principal component analysis were performed. The obtained results indicate that K659N and R747H mutations have a distinct effect on the dynamic behaviour of FGFR2 protein. Our strategy may be helpful for understanding SNP effects on proteins with function and their role in human genetic diseases and for the development of novel pharmacological strategies.