Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George S. Espie is active.

Publication


Featured researches published by George S. Espie.


Journal of Bacteriology | 2004

A Novel Evolutionary Lineage of Carbonic Anhydrase (ε Class) Is a Component of the Carboxysome Shell

Anthony K.-C. So; George S. Espie; Eric B. Williams; Jessup M. Shively; Sabine Heinhorst; Gordon C. Cannon

A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO(2) fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO(2)-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (epsilon-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO(2) necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM

Kerry L. Peña; Stephane E. Castel; Charlotte de Araujo; George S. Espie; Matthew S. Kimber

Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO2 by carbonic anhydrase (CA) prior to fixation. Paradoxically, many β-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal β-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to γ-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA—the first catalytically active bacterial γ-CA reported. The 2.0 Å structure of CcmM209 reveals a trimeric, left-handed β-helix structure that closely resembles Cam, except that residues 198–207 form a third α-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194–209 (CcmM193) results in an inactive protein whose 1.1 Å structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the β-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.


Archives of Microbiology | 1993

Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625

R. Michael L. McKay; Sarah P. Gibbs; George S. Espie

In the cyanobacterium Synechococcus UTEX 625, the extent of expression of carboxysomes appeared dependent on the level of inorganic carbon (CO2+HCOinf3sup-) in the growth medium. In cells grown under 5% CO2 and in those bubbled with air, carboxysomes were present in low numbers (<2 · longitudinal section-1) and were distributed in an apparently random manner throughout the centroplasm. In contrast, cells grown in standing culture and those bubbled with 30 μl CO2 · 1-1 possessed many carboxysomes (>8 · longitudinal section-1). Moreover, carboxysomes in these cells were usually positioned near the cell periphery, aligned along the interface between the centroplasm and the photosynthetic thylakoids. This arrangement of carboxysomes coincided with the full induction of the HCOinf3sup-transport system that is involved in concentrating inorganic carbon within the cells for subsequent use in photosynthesis. Immunolocalization studies indicate that the Calvin cycle enzyme ribulose bisphosphate carboxylase was predominantly carboxysome-localized, regardless of the inorganic carbon concentration of the growth medium, while phosphoribulokinase was confined to the thylakoid region. It is postulated that the peripheral arrangement of carboxysomes may provide for more efficient photosynthetic utilization of the internal inorganic carbon pool in cells from cultures where carbon resources are limiting.


Plant Molecular Biology | 1998

CLONING, CHARACTERIZATION AND EXPRESSION OF CARBONIC ANHYDRASE FROM THE CYANOBACTERIUM SYNECHOCYSTIS PCC6803

Anthony K.-C. So; George S. Espie

A 3.3 kb HindIII restriction-digest DNA fragment was isolated from a Synechocystis sp. strain PCC6803 subgenomic plasmid library which strongly hybridized to a 349 bp fragment of the icfA (ccaA) gene from Synechococcus sp. strain PCC7942. DNA sequence analysis of the fragment revealed three open reading frames (ORFs), two of which potentially coded for pantothenate synthetase (ORF275) and cytidylate kinase (ORF230). The third, ORF274, was 825 bp in length, encoding a deduced polypeptide of 274 aa (M_r, 30747) that bears 55% sequence identity to the Synechococcus icfA (ccaA) translation product, a β-type carbonic anhydrase (CA). A 932 bp EcoRI fragment containing ORF274 was subcloned into an expression vector and the construct was transformed into Escherichia coli for overexpression. Electrometric assays for CA activity revealed that whole cell extracts containing the recombinant protein significantly enhanced the rate of conversion of CO_2 to HCO-_3 and that 98% of this catalytic activity was inhibited by ethoxyzolamide, a well-characterized CA inhibitor. Antisera derived against the overexpressed protein recognized a 30.7 kDa protein that was predominantly associated with the isolated carboxysome fraction from Synechocystis. These results provide molecular and physiological evidence for the identification of a ccaA homologue in Synechocystis PCC6803 that encodes a carboxysomal β-type CA.


Bioresource Technology | 2013

Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation.

Peter J. Schnurr; George S. Espie; D. Grant Allen

An algae biofilm growth system was developed to study the growth kinetics and neutral lipid productivities of Scenedesmus obliquus and Nitzschia palea, and to determine if algal biofilms can be starved of key nutrients to increase their neutral lipid concentrations. Linear growth curves were determined for each species until nutrient starvation commenced, at which point growth ceased and/or biofilms sloughed from their substratum. Nutrient starvation did not increase neutral lipid concentrations in any of the biofilms; however, it approximately doubled their lipid concentrations when grown in suspension. Biomass productivities of 2.8 and 2.1g/m(2)/d and lipid productivities of 0.45 and 0.18 g/m(2)/d were determined for N. palea and S. obliquus, respectively. The results suggest that nutrient starvation of biofilms is not a desirable method of lipid production for algae biofilm biofuel production systems, but that lipid production rates compare favorably with conventional terrestrial biofuel sources.


Photosynthesis Research | 2011

Carboxysomes: cyanobacterial RubisCO comes in small packages

George S. Espie; Matthew S. Kimber

Cyanobacteria (as well as many chemoautotrophs) actively pump inorganic carbon (in the form of HCO3−) into the cytosol in order to enhance the overall efficiency of carbon fixation. The success of this approach is dependent upon the presence of carboxysomes—large, polyhedral, cytosolic bodies which sequester ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and carbonic anhydrase. Carboxysomes seem to function by allowing ready passage of HCO3− into the body, but hindering the escape of evolved CO2, promoting the accumulation of CO2 in the vicinity of RubisCO and, consequently, efficient carbon fixation. This selectivity is mediated by a thin shell of protein, which envelops the carboxysome’s enzymatic core and uses narrow pores to control the passage of small molecules. In this review, we summarize recent advances in understanding the organization and functioning of these intriguing, and ecologically very important molecular machines.


Journal of Phycology | 2001

Active transport of CO2 by three species of marine microalgae

I. Emma Huertas; Brian Colman; George S. Espie; Luis M. Lubián

The occurrence of an active CO2 transport system and of carbonic anhydrase (CA) has been investigated by mass spectrometry in the marine, unicellular rhodophyte Porphyridium cruentum (S.F. Gray) Naegeli and two marine chlorophytes Nannochloris atomus Butcher and Nannochloris maculata Butcher. Illumination of darkened cells incubated with 100 μM H13CO3− caused a rapid initial drop, followed by a slower decline in the extracellular CO2 concentration. Addition of bovine CA to the medium raised the CO2 concentration by restoring the HCO3−–CO2 equilibrium, indicating that cells were taking up CO2 and were maintaining the CO2 concentration in the medium below its equilibrium value during photosynthesis. Darkening the cell suspensions caused a rapid increase in the extracellular CO2 concentration in all three species, indicating that the cells had accumulated an internal pool of unfixed inorganic carbon. CA activity was detected by monitoring the rate of exchange of 18O from 13C18O2 into water. Exchange of 18O was rapid in darkened cell suspensions, but was not inhibited by 500 μM acetazolamide, a membrane‐impermeable inhibitor of CA, indicating that external CA activity was not present in any of these species. In all three species, the rate of exchange was completely inhibited by 500 μM ethoxyzolamide, a membrane‐permeable CA‐inhibitor, showing that an intracellular CA was present. These results demonstrate that the three species are capable of CO2 uptake by active transport for use as a carbon source for photosynthesis.


Planta | 2002

Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803

Anthony K.-C. So; Meryl John-Mckay; George S. Espie

Abstract. A fully-segregated mutant (ccaA::kanR) defective in the ccaA gene, encoding a carboxysome-associated β-carbonic anhydrase (CA), was generated in the cyanobacterium Synechocystis sp. PCC6803 by insertional mutagenesis. Immunoblot analysis indicated that the CcaA polypeptide was absent from the carboxysome-enriched fraction obtained from ccaA::kanR, but was present in wild-type (WT) cells. The carboxysome-enriched fraction isolated from WT cells catalyzed 18O exchange between 13C18O2 and H2O, indicative of CA activity, while ccaA::kanR carboxysomes did not. Transmission and immunogold electron microscopy revealed that carboxysomes of WT and ccaA::kanR were of similar size, shape and cellular distribution, and contained most of the cellular complement of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The ccaA::kanR cells were substantially smaller than WT and were unable to grow autotrophically at air levels of CO2. However, cell division occurred at near-WT rates when ccaA::kanR was supplied with 5% CO2 (v/v) in air. The apparent photosynthetic affinity of the mutant for inorganic carbon (Ci) was 500-fold lower than that of WT cells although intracellular Ci accumulation was comparable to WT measurements. Mass spectrometric analysis revealed that the CA-like activity associated with the active CO2 transport system was retained by ccaA::kanR cells and was inhibited by H2S, indicating that CO2 transport was distinct from the CcaA-mediated dehydration of intracellular HCO3–. The data suggest that the ccaA mutant was unable to efficiently utilize the internal Ci pool for carbon fixation and that the high-CO2-requiring phenotype of ccaA::kanR was due primarily to an inability to generate enough CO2 in the carboxysomes to sustain normal rates of photosynthesis.


Plant Biology | 2013

Evolution of the biochemistry of the photorespiratory C2 cycle

Martin Hagemann; Alisdair R. Fernie; George S. Espie; Ramona Kern; Marion Eisenhut; Sigrun Reumann; Hermann Bauwe; Andreas P. M. Weber

Oxygenic photosynthesis would not be possible without photorespiration in the present day O2 -rich atmosphere. It is now generally accepted that cyanobacteria-like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO2 fixation, all these organisms use RubisCO, which catalyses both the carboxylation and the oxygenation of ribulose 1,5-bisphosphate. One of the reaction products of the oxygenase reaction, 2-phosphoglycolate (2PG), represents the starting point of the photorespiratory C2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin-Benson cycle (CBC) intermediate 3-phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants. While the origin of the C2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO2 /O2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.


Functional Plant Biology | 2002

Characterization of the C-terminal extension of carboxysomal carbonic anhydrase from Synechocystis sp. PCC6803

Anthony K.-C. So; Swan S.-W. Cot; George S. Espie

Sequence analysis of the carboxysomal carbonic anhydrase (CcaA) from Synechocystis PCC6803, Synechococcus PCC7942 and Nostoc ATCC29133, indicated high sequence identity to the β class of plant and bacterial carbonic anhydrases (CA), and conservation of the active site region. However, the cyanobacterial enzyme has a C-terminal extension of about 75 amino acids (aa) not found in the plant enzymes, and largely absent from other bacterial enzymes. Using recombinant DNA technology, genes encoding C-terminal truncation products of up to 127 aa were overexpressed in E. coli, and partially purified lysates were analysed for CA-mediated exchange of 18O between 13C18O2and H216O. Recombinant CcaA proteins with up to 60 aa removed (CcaAΔ60) were catalytically competent, but beyond this there was an abrupt loss of activity. CcaAΔ0, along with CcaAΔ40 and CcaAΔ60, also catalysed the hydrolysis of carbon oxysulfide (COS; an isoelectronic structural analogue of CO2), but CcaAΔ63 and CcaAΔ127 did not, indicating that truncations greater than 62 aa resulted in a general loss of catalytic competency. Analysis of protein-protein interaction using the yeast two-hybrid system revealed that CcaA did not interact with the large or small Rubisco subunits (RbcL and RbcS, respectively) of Synechocystis, but there was strong CcaA-CcaA interaction. This protein interaction also ceased with C-terminal truncations in CcaA greater than 60 aa. The correlation between loss of CcaA-CcaA interaction and CcaA catalytic activity suggests that the proximal portion of the C-terminal extension is required for oligomerization, and that this oligomerization is essential for catalysis by the cyanobacterial enzyme. Thus, the C-terminal extension may play an important role in the function of CA within cyanobacterial carboxysomes, which is not required by the higher plant enzymes.

Collaboration


Dive into the George S. Espie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge