George S. Hussey
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George S. Hussey.
Nature Cell Biology | 2010
Arindam Chaudhury; George S. Hussey; Partho Sarothi Ray; Ge Jin; Paul L. Fox; Philip H. Howe
Transforming growth factor-β (TGF-β) induces epithelial–mesenchymal transdifferentiation (EMT) accompanied by cellular differentiation and migration. Despite extensive transcriptomic profiling, the identification of TGF-β-inducible, EMT-specific genes has met with limited success. Here we identify a post-transcriptional pathway by which TGF-β modulates the expression of EMT-specific proteins and of EMT itself. We show that heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) binds a structural, 33-nucleotide TGF-β-activated translation (BAT) element in the 3′ untranslated region of disabled-2 (Dab2) and interleukin-like EMT inducer (ILEI) transcripts, and represses their translation. TGF-β activation leads to phosphorylation at Ser 43 of hnRNP E1 by protein kinase Bβ/Akt2, inducing its release from the BAT element and translational activation of Dab2 and ILEI messenger RNAs. Modulation of hnRNP E1 expression or its post-translational modification alters the TGF-β-mediated reversal of translational silencing of the target transcripts and EMT. These results suggest the existence of a TGF-β-inducible post-transcriptional regulon that controls EMT during the development and metastatic progression of tumours.
Science Advances | 2016
Luai Huleihel; George S. Hussey; Juan Diego Naranjo; Li Zhang; Jenna L. Dziki; Neill J. Turner; Donna B. Stolz; Stephen F. Badylak
Matrix-bound vesicles within ECM bioscaffolds provide mechanistic insight into inductive properties. Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis.
PLOS ONE | 2012
George S. Hussey; Laura A. Link; Andrew S. Brown; Breege V. Howley; Arindam Chaudhury; Philip H. Howe
A major challenge in the clinical management of human cancers is to accurately stratify patients according to risk and likelihood of a favorable response. Stratification is confounded by significant phenotypic heterogeneity in some tumor types, often without obvious criteria for subdivision. Despite intensive transcriptional array analyses, the identity and validation of cancer specific ‘signature genes’ remains elusive, partially because the transcriptome does not mirror the proteome. The simplification associated with transcriptomic profiling does not take into consideration changes in the relative expression among transcripts that arise due to post-transcriptional regulatory events. We have previously shown that TGFβ post-transcriptionally regulates epithelial-mesenchymal transition (EMT) by causing increased expression of two transcripts, Dab2 and ILEI, by modulating hnRNP E1 phosphorylation. Using a genome-wide combinatorial approach involving expression profiling and RIP-Chip analysis, we have identified a cohort of translationally regulated mRNAs that are induced during TGFβ-mediated EMT. Coordinated translational regulation by hnRNP E1 constitutes a post-transcriptional regulon inhibiting the expression of related EMT-facilitating genes, thus enabling the cell to rapidly and coordinately regulate multiple EMT-facilitating genes.
Journal of Biomedical Materials Research Part A | 2016
Abigail E. Loneker; Denver M. Faulk; George S. Hussey; Antonio D'Amore; Stephen F. Badylak
Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRHs supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRHs supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes.
Oncogene | 2016
Breege V. Howley; George S. Hussey; Laura A. Link; Philip H. Howe
The epithelial-to-mesenchymal transition (EMT) is a cellular process that functions during embryonic development and tissue regeneration, thought to be aberrantly activated in epithelial-derived cancer and has an important role in the process of metastasis. The transforming growth factor (TGF)-β signaling pathway is a key inducer of EMT and we have elucidated a posttranscriptional mechanism by which TGFβ modulates expression of select transcripts via the RNA-binding protein hnRNP E1 during EMT. One such transcript inhibin βA is a member of the TGFβ superfamily. Here, we show by polysome profiling that inhibin βA is translationally regulated by TGFβ via hnRNP E1. TGFβ treatment or knockdown of hnRNP E1 relieves silencing of the inhibin βA transcript, resulting in increased protein expression and secreted levels of the inhibin βA homodimer, activin A. Our data indicate that the translational upregulation of inhibin βA enhances the migration and invasion of cells that have undergone an EMT and promotes cancer progression in vivo.
Nature Reviews Gastroenterology & Hepatology | 2017
George S. Hussey; Timothy J. Keane; Stephen F. Badylak
The synthesis and secretion of components that constitute the extracellular matrix (ECM) by resident cell types occur at the earliest stages of embryonic development, and continue throughout life in both healthy and diseased physiological states. The ECM consists of a complex mixture of insoluble and soluble functional components that are arranged in a tissue-specific 3D ultrastructure, and it regulates numerous biological processes, including angiogenesis, innervation and stem cell differentiation. Owing to its composition and influence on embryonic development, as well as cellular and organ homeostasis, the ECM is an ideal therapeutic substrate for the repair of damaged or diseased tissues. Biologic scaffold materials that are composed of ECM have been used in various surgical and tissue-engineering applications. The gastrointestinal (GI) tract presents distinct challenges, such as diverse pH conditions and the requirement for motility and nutrient absorption. Despite these challenges, the use of homologous and heterologous ECM bioscaffolds for the focal or segmental reconstruction and regeneration of GI tissue has shown promise in early preclinical and clinical studies. This Review discusses the importance of tissue-specific ECM bioscaffolds and highlights the major advances that have been made in regenerative medicine strategies for the reconstruction of functional GI tissues.
Journal of Biomaterials Applications | 2017
Anne Faust; Apoorva Kandakatla; Yolandi van der Merwe; Tanchen Ren; Luai Huleihel; George S. Hussey; Juan Diego Naranjo; Scott A. Johnson; Stephen F. Badylak; Michael B. Steketee
Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.
Journal of Clinical Investigation | 2017
Ephraim Ansa-Addo; Yongliang Zhang; Yi Yang; George S. Hussey; Breege V. Howley; Mohammad Salem; Brian Riesenberg; Shaoli Sun; Don C. Rockey; Serhan Karvar; Philip H. Howe; Bei Liu; Zihai Li
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that are important for organizing membrane domains and receptor signaling and regulating the migration of effector T cells. Whether moesin plays any role during the generation of TGF-&bgr;–induced Tregs (iTregs) is unknown. Here, we have discovered that moesin is translationally regulated by TGF-&bgr; and is also required for optimal TGF-&bgr; signaling that promotes efficient development of iTregs. Loss of moesin impaired the development and function of both peripherally derived iTregs and in vitro–induced Tregs. Mechanistically, we identified an interaction between moesin and TGF-&bgr; receptor II (T&bgr;RII) that allows moesin to control the surface abundance and stability of T&bgr;RI and T&bgr;RII. We also found that moesin is required for iTreg conversion in the tumor microenvironment, and the deletion of moesin from recipient mice supported the rapid expansion of adoptively transferred CD8+ T cells against melanoma. Our study establishes moesin as an important regulator of the surface abundance and stability of T&bgr;RII and identifies moesin’s role in facilitating the efficient generation of iTregs. It also provides an advancement to our understanding about the role of the ERM proteins in regulating signal transduction pathways and suggests that modulation of moesin is a potential therapeutic target for Treg-related immune disorders.
Molecular Cancer Research | 2016
Laura A. Link; Breege V. Howley; George S. Hussey; Philip H. Howe
CDC27 is a core component of the anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase, whose oscillatory activity is responsible for the metaphase-to-anaphase transition and mitotic exit. Here, in normal murine mammary gland epithelial cells (NMuMG), CDC27 expression is controlled posttranscriptionally through the RNA binding protein poly(rC) binding protein 1 (PCBP1)/heterogeneous nuclear ribonucleoprotein E1 (HNRNP E1). shRNA-mediated knockdown of HNRNP E1 abrogates translational silencing of the Cdc27 transcript, resulting in constitutive expression of CDC27. Dysregulated expression of CDC27 leads to premature activation of the G2–M–APC/C–CDC20 complex, resulting in the aberrant degradation of FZR1/CDH1, a cofactor of the G1 and late G2–M–APC/C and a substrate normally reserved for the SCF-βTRCP ligase. Loss of CDH1 expression and of APC/C-CDH1 activity, upon constitutive expression of CDC27, results in mitotic aberrations and aneuploidy in NMuMG cells. Furthermore, tissue microarray of breast cancer patient tumor samples reveals high CDC27 levels compared with nonneoplastic breast tissue and a significant correlation between disease recurrence and CDC27 expression. These results suggest that dysregulation of HNRNP E1-mediated translational regulation of Cdc27 leads to chromosomal instability and aneuploidy and that CDC27 expression represents a significant predictor of breast cancer recurrence. Implications: The RNA-binding protein HNRNP E1 mediates translational regulation of the cell-cycle regulator CDC27 and that dysregulation of CDC27 leads to aneuploidy. In addition, high CDC27 expression in breast cancer patient tumor specimens significantly predicts disease recurrence, suggesting a novel role for CDC27 as a predictor of relapse. Mol Cancer Res; 14(7); 634–46. ©2016 AACR.
The Journal of Thoracic and Cardiovascular Surgery | 2018
Mark H. Murdock; Jordan T. Chang; Samuel K. Luketich; Drake D. Pedersen; George S. Hussey; Antonio D'Amore; Stephen F. Badylak
Objectives: The present study compared physical, mechanical, and biologic characteristics of 4 clinically available surgical sealants for cardiovascular repair. Methods: BioGlue (Cryolife Inc, Kennesaw, Ga), PreveLeak (Mallinckrodt Pharmaceuticals, St Louis, Mo), Tridyne VS (BD, Franklin Lakes, NJ), and Coseal (Baxter Healthcare Corporation, Westlake Village, Calif) were compared for the following properties: hydrated swelling, cytocompatibility, burst strength, biaxial stretching (elasticity), and in vitro degradation. Results: Sealants showed a wide range of swelling upon hydration. By gravimetric and volumetric measurement, swelling was greatest for Coseal followed by Tridyne VS, BioGlue, and PreveLeak. Tridyne VS was the most cytocompatible based on Alamar Blue assay results, supporting 85% cell survival compared with 36% to 39% survival with the other sealants. All sealants withstood pressure above mean arterial pressure (70‐110 mm Hg) and physiologic systolic blood pressure (90‐140 mm Hg) in an ex vivo arterial flow burst model; lowest peak pressure at failure was PreveLeak at 235 ± 48 mm Hg, and highest peak pressure at failure was BioGlue at 596 ± 72 mm Hg. Biaxial tensile testing showed no differences in elasticity between ex vivo porcine aorta and carotid arteries and Tridyne VS or Coseal, and BioGlue and PreveLeak were significantly stiffer. In vitro degradation time for Coseal was 6 days and 21 days for Tridyne VS. No degradation was observed in BioGlue or PreveLeak for 30 days. Conclusions: Although all sealants withstood supraphysiologic arterial pressure, there were differences in characteristics that may be important in clinical outcome. Coseal degradation time was short compared with other sealants, whereas BioGlue and PreveLeak showed a significant compliance mismatch with native porcine carotid artery. Tridyne VS was significantly more cytocompatible than the other 3 sealants.