Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Seki is active.

Publication


Featured researches published by George Seki.


Nature Genetics | 1999

Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities.

Takashi Igarashi; Jun Inatomi; Takashi Sekine; Seok Ho Cha; Yoshikatsu Kanai; Motoei Kunimi; Kazuhisa Tsukamoto; Hiroaki Satoh; Mitsunobu Shimadzu; Fumiko Tozawa; Tetsuo Mori; Masaaki Shiobara; George Seki; Hitoshi Endou

Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities


Journal of The American Society of Nephrology | 2002

Unraveling the Molecular Pathogenesis of Isolated Proximal Renal Tubular Acidosis

Takashi Igarashi; Takashi Sekine; Jun Inatomi; George Seki

Proximal renal tubular acidosis (pRTA) results from an impairment of bicarbonate (HCO(3)(-)) reabsorption in the renal proximal tubules and is characterized by a decreased renal HCO(3)(-) threshold. Proximal RTA most commonly occurs in association with multiple defects of proximal tubular transport (renal Fanconi syndrome). Although much more rare, pRTA may occur without other functional defects in proximal tubules (isolated pRTA). The presenting clinical symptom of isolated pRTA is usually growth retardation in infancy or early childhood. Three categories of isolated pRTA have been identified: (1) autosomal dominant pRTA; (2) autosomal recessive pRTA with ocular abnormalities; and (3) sporadic isolated pRTA. Autosomal dominant and autosomal recessive pRTA are usually permanent; life-long alkali therapy is needed. In contrast, sporadic isolated pRTA is transient; alkali therapy can be discontinued after several years without reappearance of symptoms. Recent genetic studies have begun to elucidate the molecular pathogenesis of inherited isolated pRTA. Studies in knockout mice have identified a candidate gene for autosomal dominant pRTA, SLC9A3, a gene encoding one of the five plasma membrane Na(+)/H(+) exchangers (NHE3). Patients with autosomal recessive pRTA and ocular abnormalities have recently been found to have mutations in the kidney type Na(+)/HCO(3)(-) cotransporter gene (SLC4A4). Identification of these gene mutations provides new insights into the molecular pathogenesis of pRTA.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Defective membrane expression of the Na+-HCO3− cotransporter NBCe1 is associated with familial migraine

Masashi Suzuki; Wim Van Paesschen; Ingeborg Stalmans; Shoko Horita; Hideomi Yamada; Bruno A. Bergmans; Eric Legius; Florence Riant; Yuehong Li; Takashi Sekine; Takashi Igarashi; Ichiro Fujimoto; Katsuhiko Mikoshiba; Mitsunobu Shimadzu; Masaaki Shiohara; Nancy Braverman; Lihadh Al-Gazali; Toshiro Fujita; George Seki

Homozygous mutations in SLC4A4, encoding the electrogenic Na+-HCO3− cotransporter NBCe1, have been known to cause proximal renal tubular acidosis (pRTA) and ocular abnormalities. In this study, we report two sisters with pRTA, ocular abnormalities, and hemiplegic migraine. Genetic analysis ruled out pathological mutations in the known genes for familial hemiplegic migraine, but identified a homozygous 65-bp deletion (Δ65bp) in the C terminus of NBCe1, corresponding to the codon change S982NfsX4. Several heterozygous members of this family also presented glaucoma and migraine with or without aura. Despite the normal electrogenic activity in Xenopus oocytes, the Δ65bp mutant showed almost no transport activity due to a predominant cytosolic retention in mammalian cells. Furthermore, coexpression experiments uncovered a dominant negative effect of the mutant through hetero-oligomer formation with wild-type NBCe1. Among other pRTA pedigrees with different NBCe1 mutations, we identified four additional homozygous patients with migraine. The immunohistological and functional analyses of these mutants demonstrate that the near total loss of NBCe1 activity in astrocytes can cause migraine potentially through dysregulation of synaptic pH.


Journal of The American Society of Nephrology | 2005

Functional Analysis of NBC1 Mutants Associated with Proximal Renal Tubular Acidosis and Ocular Abnormalities

Shoko Horita; Hideomi Yamada; Jun Inatomi; Nobuo Moriyama; Takashi Sekine; Takashi Igarashi; Yoko Endo; Majed Dasouki; Mesiha Ekim; Lihadh Al-Gazali; Mitsunobu Shimadzu; George Seki; Toshiro Fujita

Mutations in the Na+-HCO3- co-transporter (NBC1) cause permanent proximal renal tubular acidosis (pRTA) with ocular abnormalities. However, little has been known about the relationship between the degree of NBC1 inactivation and the severity of pRTA. This study identified three new homozygous mutations (T485S, A799V, and R881C) in the common coding regions of NBC1. Functional analysis of these new as well as the known mutants (R298S and R510H) in Xenopus oocytes revealed a considerable variation in their electrogenic activities. Whereas the activities of R298S, A799V, and R881C were 15 to 40% of the wild-type (WT) activity, T485S and R510H, as a result of poor surface expression, showed almost no activities. However, T485S, like R510H, had the transport activity corresponding to approximately 50% of the WT activity in ECV304 cells, indicating that surface expression of T485S and R510H varies between the different in vitro cell systems. Electrophysiologic analysis showed that WT, R298S, and R881C all function with 2HCO3- to 1Na+ stoichiometry and have similar extracellular Na+ affinity, indicating that reduction in Na+ affinity cannot explain the inactivation of R298S and R881C. These results, together with the presence of nonfunctional mutants (Q29X and DeltaA) in other patients, suggest that at least approximately 50% reduction of NBC1 activity would be required to cause severe pRTA.


Journal of Biological Chemistry | 2010

Human Sodium Phosphate Transporter 4 (hNPT4/SLC17A3) as a Common Renal Secretory Pathway for Drugs and Urate

Promsuk Jutabha; Naohiko Anzai; Atsuo Taniguchi; Shuji Kaneko; Kunimasa Yan; Hideomi Yamada; Hidetaka Shimada; Toru Kimura; Tomohisa Katada; Toshiyuki Fukutomi; Kimio Tomita; Wako Urano; Hisashi Yamanaka; George Seki; Toshiro Fujita; Yoshinori Moriyama; Akira Yamada; Shunya Uchida; Michael F. Wempe; Hitoshi Endou; Hiroyuki Sakurai

The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4.


Journal of Clinical Investigation | 2001

Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis

Tomohiko Usui; Masumi Hara; Hiroaki Satoh; Nobuo Moriyama; Humie Kagaya; Shiro Amano; Tetsuro Oshika; Yasuo Ishii; Nobuhiro Ibaraki; Chiaki Hara; Motoei Kunimi; Eisei Noiri; Kazuhisa Tsukamoto; Jun Inatomi; Hayato Kawakami; Hitoshi Endou; Takashi Igarashi; Astuo Goto; Toshiro Fujita; Makoto Araie; George Seki

Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(-) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na(+)-HCO(3)-cotransport activity has not been detected in mammalian lens epithelia, cell pH (pH(i)) measurements revealed the presence of Cl(-)-independent, electrogenic Na(+)-HCO(3)-cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pH(i) recovery from acid load in the presence of HCO(3)(-)/CO(2) was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO(3)-transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.


Pflügers Archiv: European Journal of Physiology | 2004

Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis

Jun Inatomi; Shoko Horita; Nancy Braverman; Takashi Sekine; Hideomi Yamada; Yoshiro Suzuki; Katsumasa Kawahara; Nobuo Moriyama; Akihiko Kudo; Hayato Kawakami; Mitsunobu Shimadzu; Hitoshi Endou; Toshiro Fujita; George Seki; Takashi Igarashi

Permanent isolated proximal renal tubular acidosis (pRTA) with ocular abnormalities is a systemic disease with isolated pRTA, short stature and ocular abnormalities. We identified a novel homozygous deletion of nucleotide 2,311 adenine in the kidney type Na+/HCO3− cotransporter (kNBC1) cDNA in a patient with permanent isolated pRTA. This mutation is predicted to result in a frame shift at codon 721 forming a stop codon after 29 amino acids anomalously transcribed from the SLC4A4 gene. Cosegregation of this mutation with the disease was supported by heterozygosity in the parents of the affected patient. The absence of this mutation in 156 alleles of 78 normal individuals indicates that this mutation is related to the disease and is not a common DNA sequence polymorphism. When injected into Xenopus oocytes, the mutant cRNA failed to induce electrogenic transport activity. In addition, immunofluorescence and Western blot analysis failed to detect the expression of the full-length protein in mutant-injected oocytes. Our results expand the spectrum of kNBC1 mutations in permanent isolated pRTA with ocular abnormalities and increase our understanding of the renal tubular mechanism that is essential for acid-base homeostasis.


Journal of Clinical Investigation | 2011

IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway

Dongki Yang; Qin Li; Insuk So; Chou Long Huang; Hideaki Ando; Akihiro Mizutani; George Seki; Katsuhiko Mikoshiba; Philip J. Thomas; Shmuel Muallem

Fluid and HCO(3)(-) secretion are fundamental functions of epithelia and determine bodily fluid volume and ionic composition, among other things. Secretion of ductal fluid and HCO(3)(-) in secretory glands is fueled by Na(+)/HCO(3)(-) cotransport mediated by basolateral solute carrier family 4 member 4 (NBCe1-B) and by Cl(-)/HCO(3)(-) exchange mediated by luminal solute carrier family 26, member 6 (Slc26a6) and CFTR. However, the mechanisms governing ductal secretion are not known. Here, we have shown that pancreatic ductal secretion in mice is suppressed by silencing of the NBCe1-B/CFTR activator inositol-1,4,5-trisphosphate (IP(3)) receptor-binding protein released with IP(3) (IRBIT) and by inhibition of protein phosphatase 1 (PP1). In contrast, silencing the with-no-lysine (WNK) kinases and Ste20-related proline/alanine-rich kinase (SPAK) increased secretion. Molecular analysis revealed that the WNK kinases acted as scaffolds to recruit SPAK, which phosphorylated CFTR and NBCe1-B, reducing their cell surface expression. IRBIT opposed the effects of WNKs and SPAK by recruiting PP1 to the complex to dephosphorylate CFTR and NBCe1-B, restoring their cell surface expression, in addition to stimulating their activities. Silencing of SPAK and IRBIT in the same ducts rescued ductal secretion due to silencing of IRBIT alone. These findings stress the pivotal role of IRBIT in epithelial fluid and HCO(3)(-) secretion and provide a molecular mechanism by which IRBIT coordinates these processes. They also have implications for WNK/SPAK kinase-regulated processes involved in systemic fluid homeostasis, hypertension, and cystic fibrosis.


International Journal of Hypertension | 2011

Insulin Resistance, Obesity, Hypertension, and Renal Sodium Transport

Shoko Horita; George Seki; Hideomi Yamada; Masashi Suzuki; Kazuhiko Koike; Toshiro Fujita

Sodium transport through various nephron segments is quite important in regulating sodium reabsorption and blood pressure. Among several regulators of this process, insulin acts on almost all the nephron segments and is a strong enhancer of sodium reabsorption. Sodium-proton exchanger type 3 (NHE3) is a main regulator of sodium reabsorption in the luminal side of proximal tubule. In the basolateral side of the proximal tubule, sodium-bicarbonate cotransporter (NBCe1) mediates sodium and bicarbonate exit from tubular cells. In the distal nephron and the connecting tubule, epithelial sodium channel (ENaC) is of great importance to sodium reabsorption. NHE3, NBCe1, and ENaC are all regulated by insulin. Recently with-no-lysine (WNK) kinases, responsible for familial hypertension, stimulating sodium reabsorption in the distal nephron, have been found to be also regulated by insulin. We will discuss the regulation of renal sodium transport by insulin and its roles in the pathogenesis of hypertension in insulin resistance.


Journal of The American Society of Nephrology | 2005

Roles of Insulin Receptor Substrates in Insulin-Induced Stimulation of Renal Proximal Bicarbonate Absorption

Yanan Zheng; Hideomi Yamada; Ken Sakamoto; Shoko Horita; Motoei Kunimi; Yoko Endo; Yuehong Li; Kazuyuki Tobe; Yasuo Terauchi; Takashi Kadowaki; George Seki; Toshiro Fujita

Insulin resistance is frequently associated with hypertension, but the mechanism underlying this association remains speculative. Although insulin is known to modify renal tubular functions, little is known about roles of insulin receptor substrates (IRS) in the renal insulin actions. For clarifying these issues, the effects of insulin on the rate of bicarbonate absorption (JHCO3-) were compared in isolated renal proximal tubules from wild-type, IRS1-deficient (IRS1-/-), and IRS2-deficient (IRS2-/-) mice. In wild-type mice, physiologic concentrations of insulin significantly increased JHCO3-. This stimulation was completely inhibited by wortmannin and LY-294002, indicating that the phosphatidylinositol 3-kinase pathway mediates the insulin action. The stimulatory effect of insulin on JHCO3- was completely preserved in IRS1-/- mice but was significantly attenuated in IRS2-/- mice. Similarly, insulin-induced Akt phosphorylation was preserved in IRS1-/- mice but was markedly attenuated in IRS2-/- mice. Furthermore, insulin-induced tyrosine phosphorylation of IRS2 was more prominent than that of IRS1. These results indicate that IRS2 plays a major role in the stimulation of renal proximal absorption by insulin. Because defects at the level of IRS1 may underlie at least some forms of insulin resistance, sodium retention, facilitated by hyperinsulinemia through the IRS1-independent pathway, could be an important factor in pathogenesis of hypertension in insulin resistance.

Collaboration


Dive into the George Seki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge