Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George V. Sharonov is active.

Publication


Featured researches published by George V. Sharonov.


European Journal of Immunology | 2013

Pairing of T-cell receptor chains via emulsion PCR

Maria A. Turchaninova; Olga V. Britanova; Dmitriy A. Bolotin; Mikhail Shugay; Ekaterina V. Putintseva; Dmitriy B. Staroverov; George V. Sharonov; Dmitriy Shcherbo; Ivan V. Zvyagin; Ilgar Z. Mamedov; Carsten Linnemann; Ton N. M. Schumacher; Dmitriy M. Chudakov

Our ability to analyze adaptive immunity and engineer its activity has long been constrained by our limited ability to identify native pairs of heavy–light antibody chains and alpha–beta T‐cell receptor (TCR) chains — both of which comprise coupled “halves of a key”, collectively capable of recognizing specific antigens. Here, we report a cell‐based emulsion RT‐PCR approach that allows the selective fusion of the native pairs of amplified TCR alpha and beta chain genes for complex samples. A new type of PCR suppression technique was developed that makes it possible to amplify the fused library with minimal noise for subsequent analysis by high‐throughput paired‐end Illumina sequencing. With this technique, single analysis of a complex blood sample allows identification of multiple native TCR chain pairs. This approach may be extended to identify native antibody chain pairs and, more generally, pairs of mRNA molecules that are coexpressed in the same living cells.


Biochemical Journal | 2005

Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage

Alexei V. Feofanov; George V. Sharonov; Maria V. Astapova; Dmitriy I. Rodionov; Yuriy N. Utkin; Alexander S. Arseniev

Cytotoxins from cobra venom are known to manifest cytotoxicity in various cell types. It is widely accepted that the plasma membrane is a target of cytotoxins, but the mechanism of their action remains obscure. Using the confocal spectral imaging technique, we show for the first time that cytotoxins from cobra venom penetrate readily into living cancer cells and accumulate markedly in lysosomes. Cytotoxins CT1 and CT2 from Naja oxiana, CT3 from Naja kaouthia and CT1 from Naja haje are demonstrated to possess this property with respect to human lung adenocarcinoma A549 and promyelocytic leukaemia HL60 cells. Immobilized plasma membrane binding accompanies the internalization of CT3 from Naja kaouthia in the HL60 cells, but it is very weak for other cytotoxins. Detectable membrane binding is not a property of any of the cytotoxins tested in A549 cells. The kinetics and concentration-dependence of cytotoxin accumulation in lysosomes correlate well with their cytotoxic effects. On the basis of the results obtained, we propose that lysosomes are a primary target of the lytic action of cytotoxins. Plasma membrane permeabilization seems to be a downstream event relative to lysosome rupture. Direct damage to the plasma membrane may be a complementary mechanism, but its relative contribution to the cytotoxic action depends on the cytotoxin structure and cell type.


Nature | 2016

Local fitness landscape of the green fluorescent protein.

Karen S. Sarkisyan; Dmitry A. Bolotin; Margarita V. Meer; Dinara R. Usmanova; Alexander S. Mishin; George V. Sharonov; Dmitry N. Ivankov; Nina G. Bozhanova; Mikhail S. Baranov; Onuralp Soylemez; Natalya S. Bogatyreva; Peter K. Vlasov; Evgeny S. Egorov; Maria D. Logacheva; Alexey S. Kondrashov; Dmitry M. Chudakov; Ekaterina V. Putintseva; Ilgar Z. Mamedov; Dan S. Tawfik; Konstantin A. Lukyanov; Fyodor A. Kondrashov

Fitness landscapes depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence or in different sequences. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here we visualize an extensive region of the local fitness landscape of the green fluorescent protein from Aequorea victoria (avGFP) by measuring the native function (fluorescence) of tens of thousands of derivative genotypes of avGFP. We show that the fitness landscape of avGFP is narrow, with 3/4 of the derivatives with a single mutation showing reduced fluorescence and half of the derivatives with four mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations and mostly occurred through the cumulative effect of slightly deleterious mutations causing a threshold-like decrease in protein stability and a concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for several fields including molecular evolution, population genetics and protein design.


Embo Molecular Medicine | 2011

Quantitative tracking of T cell clones after haematopoietic stem cell transplantation

Ilgar Z. Mamedov; Olga V. Britanova; Dmitriy A. Bolotin; Anna V. Chkalina; Dmitriy B. Staroverov; Ivan V. Zvyagin; Alexey A. Kotlobay; Maria A. Turchaninova; Denis A. Fedorenko; Andrew A. Novik; George V. Sharonov; Sergey Lukyanov; Dmitriy M. Chudakov; Yuri B. Lebedev

Autologous haematopoietic stem cell transplantation is highly efficient for the treatment of systemic autoimmune diseases, but its consequences for the immune system remain poorly understood. Here, we describe an optimized RNA‐based technology for unbiased amplification of T cell receptor beta‐chain libraries and use it to perform the first detailed, quantitative tracking of T cell clones during 10 months after transplantation. We show that multiple clones survive the procedure, contribute to the immune response to activated infections, and form a new skewed and stable T cell receptor repertoire.


Apoptosis | 2005

Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells

George V. Sharonov; Alexey V. Feofanov; O. V. Bocharova; Maria V. Astapova; V.I. Dedukhova; Boris V. Chernyak; D. A. Dolgikh; Alexander S. Arseniev; Vladimir P. Skulachev; Kirpichnikov Mp

A non-traumatic electroporation procedure was developed to load exogenous cytochrome c into the cytoplasm and to study the apoptotic effect of cytochrome c, its K72-substitued mutants and “yeast → horse” hybrid cytochrome c in living WEHI-3 cells. The minimum apoptosis-activating intracellular concentration of horse heart cytochrome c was estimated to be 2.7 ± 0.5 μM (47 ± 9 fg/cell). The equieffective concentrations of the K72A-, K72E- and K72L-substituted mutants of cytochrome c were five-, 15- and 70-fold higher. The “yeast → horse” hybrid created by introducing S2D, K4E, A7K, T8K, and K11V substitutions (horse protein numbering) and deleting five N-terminal residues in yeast cytochrome c did not evoke apoptotic activity in mammalian cells. The apoptotic function of cytochrome c was abolished by the K72W substitution. The K72W-substituted cytochrome c possesses reduced affinity to the apoptotic protease activating factor-1 (Apaf-1) and forms an inactive complex. This mutant is competent as a respiratory-chain electron carrier and well suited for knock-in studies of cytochrome c-mediated apoptosis.


Biochemical Journal | 2011

Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein

Ekaterina O. Serebrovskaya; Tatiana V. Gorodnicheva; Galina V. Ermakova; Elena A. Solovieva; George V. Sharonov; Elena V. Zagaynova; Dmitriy M. Chudakov; Sergey Lukyanov; Andrey G. Zaraisky; Konstantin A. Lukyanov

Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.


Biochemistry | 2004

Comparative Study of Structure and Activity of Cytotoxins from Venom of the Cobras Naja oxiana, Naja kaouthia, and Naja haje

Alexey V. Feofanov; George V. Sharonov; Maxim A. Dubinnyi; Maria V. Astapova; Irina Kudelina; Peter V. Dubovskii; D. I. Rodionov; Yu. N. Utkin; Alexander S. Arseniev

Cytotoxins are positively charged polypeptides that constitute about 60% of all proteins in cobra venom; they have a wide spectrum of biological activities. By CD spectroscopy, cytotoxins CT1 and CT2 Naja oxiana, CT3 Naja kaouthia, and CT1 and CT2 Naja haje were shown to have similar secondary structure in an aqueous environment, with dominating β-sheet structure, and to vary in the twisting angle of the β-sheet and the conformation of disulfide groups. Using dodecylphosphocholine micelles and liposomes, CT1 and CT2 Naja oxiana were shown to incorporate into lipid structures without changes in the secondary structure of the peptides. The binding of CT1 and CT2 Naja oxiana with liposomes was associated with an increase in the β-sheet twisting and a sign change of the dihedral angle of one disulfide group. The cytotoxins were considerably different in cytotoxicity and cooperativity of the effect on human promyelocytic leukemia cells HL60, mouse myelomonocytic cells WEHI-3, and human erythroleukemic cells K562. The most toxic CT2 Naja oxiana and CT3 Naja kaouthia possessed low cooperativity of interaction (Hill coefficient h = 0.6-0.8), unlike 10-20-fold less toxic CT1 and CT2 Naja haje (h = 1.2-1.7). CT1 Naja oxiana has an intermediate position on the cytotoxicity scale and is characterized by h = 0.5-0.8. The cytotoxins under study induced necrosis of HL60 cells and failed to activate apoptosis. The differences in cytotoxicity are supposed to be related not with features of the secondary structure of the peptides, but with interactions of side chains of variable amino acid residues with lipids and/or membrane proteins.


Journal of Immunology | 2015

Quantitative Profiling of Immune Repertoires for Minor Lymphocyte Counts Using Unique Molecular Identifiers

Evgeny S. Egorov; Ekaterina M. Merzlyak; Andrew Shelenkov; Olga V. Britanova; George V. Sharonov; Dmitriy B. Staroverov; Dmitriy A. Bolotin; Alexey N. Davydov; Ekaterina V. Barsova; Yuriy B. Lebedev; Mikhail Shugay; Dmitriy M. Chudakov

Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications.


Photochemistry and Photobiology | 2004

Comparative study of photodynamic properties of 13,15-N-cycloimide derivatives of chlorin p6.

Alexei V. Feofanov; George V. Sharonov; Alexei Grichine; Tatyana Karmakova; Anna Pljutinskaya; Victoria S. Lebedeva; Ramezes Ruziyev; Raisa I. Yakubovskaya; Andrei Mironov; Matthieu Refregier; Jean-Claude Maurizot; Paul Vigny

Abstract Comparative study of 13,15-[N-(2-hydroxyethyl)]cycloimide chlorin p6 (2), 13,15-(N-acetoxy)cycloimide chlorin p6 (3), 13,15-(N-hydroxy)cycloimide chlorin p6 methyl ester (4) and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester (5) together with the previously investigated 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 (1) was performed. The dependence of the key photodynamic properties of 1–5 on the introduced substituents was analyzed. The photoinduced cell-killing activity of 4 is 100- and 280-fold higher than that of chlorin p6 and Photogem, respectively, as estimated on A549 human lung adenocarcinoma cells. The activity is reduced eight times in the order 4 > 5 > 1 > 2 > 3. The intracellular accumulation of 1–5 occurs in cytoplasm in a monomeric form bound to the lipids of cellular membranes. This form of 1, 2, 3, 4 and 5 is characterized by the high quantum yield of singlet oxygen generation, which depends on the introduced substituents, 0.66, 0.59, 0.35, 0.51 and 0.73, respectively. The photostability is two-fold less for 1 and four-fold less for 2, 3 and 5 than for 4. The rates of cellular uptake and efflux of 1–5 vary widely, thus providing the way to optimize the pharmacological properties of the photosensitizer (PS) using the respective substituents. Modifying the substituents, 1–5 were targeted to different cellular organelles. The enhanced accumulation in the Golgi apparatus and mitochondria complemented with diffuse staining of intracellular membranous structures is a property of 1–4. Compound 5 accumulates selectively in the lipid droplets and stains weakly perinuclear structures. Temperature-sensitive mechanisms of transport are responsible for the 1–4 uptake. Diffusion can play a role in the internalization of 5 but not of 1–4. Endocytosis via caveolae, clathrin-dependent and adenosine triphosphate–dependent pathways are not noticeably involved in the 1–5 internalization. Independently from their intracellular localization 1, 4 and 5 are highly efficient near-IR PS, which induce predominantly an apoptotic type of cell death under conditions providing ca 50% level of phototoxicity and necrosis at the 100% level of phototoxicity.


Journal of Immunological Methods | 2003

Resistance of cellular membrane antigens to solubilization with Triton X-100 as a marker of their association with lipid rafts—analysis by flow cytometry

Alexander V. Filatov; Irina B. Shmigol; Igor Kuzin; George V. Sharonov; Alexei V. Feofanov

Lipid rafts are specialized micro-domains of the plasma membrane enriched in glycosphingolipid and cholesterol that play important role in signal transduction, membrane trafficking, and cell adhesion. A distinct feature of lipid rafts is their resistance to solubilization with non-ionic detergent Triton X-100 (TX-100). In this study, we used flow cytometry to evaluate TX-100 resistance of 74 cell membrane molecules expressed on normal human peripheral blood lymphocytes (PBL), thymocytes, and 12 lymphoid cell lines. Resistance of membrane molecules to solubilization with TX-100 was determined by comparing the intensities of fluorescence of cells treated with TX-100 or left untreated. The majority of antigens analyzed were easily solubilized with TX-100 that resulted in decreased fluorescence intensity. However, a group of antigens showed TX-100 resistance in the range of 20-100%. These included all glycosylphosphatidylinositol (GPI)-anchored antigens under study, as well as some glycolipid and trans-membrane antigens. With the few exceptions, antigen resistance to solubilization with TX-100 was stable parameter, which did not depend on cell type in which it was analyzed. There was a good correspondence between the antigens showing resistance to solubilization with TX-100 as evaluated by our flow cytometry method, and the antigens that were previously demonstrated in detergent-resistant membranes using a more standard method of physical fractionation. Taken collectively, our data suggest that flow cytometry is a useful method for rapid evaluation of the possible association of a membrane antigen with lipid rafts.

Collaboration


Dive into the George V. Sharonov's collaboration.

Top Co-Authors

Avatar

Alexei V. Feofanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria V. Astapova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tkachuk Va

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitriy M. Chudakov

Russian National Research Medical University

View shared research outputs
Top Co-Authors

Avatar

Konstantin A. Lukyanov

Nizhny Novgorod State Medical Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge