George W. Hubert
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George W. Hubert.
Nature Reviews Neuroscience | 2008
George Rogge; Douglas C. Jones; George W. Hubert; Y. Lin; Michael J. Kuhar
Over the past decade or so, CART (cocaine- and amphetamine-regulated transcript) peptides have emerged as major neurotransmitters and hormones. CART peptides are widely distributed in the CNS and are involved in regulating many processes, including food intake and the maintenance of body weight, reward and endocrine functions. Recent studies have produced a wealth of information about the location, regulation, processing and functions of CART peptides, but additional studies aimed at elucidating the physiological effects of the peptides and at characterizing the CART receptor(s) are needed to take advantage of possible therapeutic applications.
Trends in Endocrinology and Metabolism | 2004
Richard G. Hunter; Kelly B. Philpot; Aleksandra Vicentic; Geraldina Dominguez; George W. Hubert; Michael J. Kuhar
CART (cocaine- and amphetamine-regulated transcript) peptides are neurotransmitters that have received much attention as mediators of feeding behavior and body-weight regulation in mammals. CART peptides and their mRNAs are found in many brain regions and in peripheral tissues that are involved in feeding, and many animal studies implicate CART as an inhibitor of feeding. Animal studies also demonstrate that CART expression is regulated by both leptin and glucocorticoids, two hormones known to be associated with the regulation of body weight. A recent study also links a mutation in the CART gene to obesity in humans. These peptides might become targets for drug development in the area of obesity.
Journal of Neurochemistry | 1991
Jeffrey P. Ng; George W. Hubert; Joseph B. Justice
Abstract: Electrically stimulated dopamine (DA) release (overflow) and uptake were measured with in vivo voltam‐metry in the nucleus accumbens (N ACC) of anesthetized rats that had previously received repeated cocaine treatments. Electrically stimulated DA release was induced by a 10‐s stimulation in the medial forebrain bundle (2‐ms, 200‐/iA, biphasic pulses at 100 Hz). DA overflow and uptake were measured with fast chronoamperometry using a Nafion‐plated, carbon fiber electrode. Animals given repeated doses of cocaine (10 mg/kg s.c. from day 1 to 5, 20 mg/kg s.c. from day 6 to 10) showed marked increases in DA uptake (5.47±0.28 vs. 2.93±0.26 μM/s) and in stimulated DA overflow (27.3±1.1 vs. 18.9±1.3 nM) compared with DA uptake and stimulated overflow in saline control animals. The increased uptake was shown to be independent of the increased overflow. Uptake was monitored as a function of stimulation current, and the data were extrapolated to zero stimulation, resulting in calculated rates of uptake of 2.43 and 3.71 μM/s in the control and cocaine‐treated groups, respectively. These effects were found to be temporary, as there were no significant differences in stimulated release or uptake between saline control animals and animals given 10 days of cocaine followed by a 10‐day abstinence period. These alterations in the N ACC produced by repeated cocaine administration may be a compensatory response to prolonged uptake blockade of synaptic DA.
Journal of Chemical Neuroanatomy | 2001
Yoland Smith; Ali Charara; Maryse Paquet; Jeremy Z. Kieval; Jean-Francois Pare; Jesse E. Hanson; George W. Hubert; Masaaki Kuwajima; Allan I. Levey
The functions of glutamate and GABA in the CNS are mediated by ionotropic and metabotropic, G protein-coupled, receptors. Both receptor families are widely expressed in basal ganglia structures in primates and nonprimates. The recent development of highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor subtypes in the primate basal ganglia. Furthermore, the use of high resolution immunogold techniques at the electron microscopic level led to major breakthroughs in our understanding of the subsynaptic and subcellular localization of these receptors in primates. In this review, we will provide a detailed account of the current knowledge of the localization of these receptors in the basal ganglia of humans and monkeys.
Neuroscience | 2006
Aleksandra Vicentic; D. Francis; Mark C Moffett; A. Lakatos; George Rogge; George W. Hubert; Jill Harley; Michael J. Kuhar
RATIONALE The basic mechanisms underlying the association between early life maternal separation and adulthood psychiatric disorders are largely unknown. One possible candidate is the central serotonergic system, which is also abnormal in psychiatric illnesses. Neuroadaptational changes in serotonergic transporter and serotonergic 1A receptors may underlie links between early life stress and adulthood psychiatric disorders. OBJECTIVE The aim of this study was to investigate the consequences of a rat model of maternal separation on serotonergic transporter and serotonergic 1A receptor densities and function in adult rat forebrain. METHODS Rat pups were separated from dams from postnatal day 2 to postnatal day 14, each day, for zero time, 15 min and 180 min to determine the time-course of effects. A non-handled group was added to control for the effects of handling by an experimenter compared with the animal facility-reared group. Quantitative [(125)I]3beta-(4-iodophenyl)tropan-2beta-carboxylic acid methyl ester and [(125)I]-mPPI autoradiography was used to determine serotonergic transporter and serotonergic 1A densities, respectively. Adult rats were challenged with saline or serotonergic 1A agonist (+) 8-hydroxy-2-(di-n-propylamino)tetralin, 0.4 mg/kg, s.c.) and plasma adrenocorticotropic hormone and corticosterone were determined. RESULTS serotonergic transporter and serotonergic 1A densities were significantly lower in the non-handled group in the paraventricular, arcuate, dorsomedial and ventromedial nuclei of the hypothalamus. The non-handled group also displayed lower serotonergic transporter and serotonergic 1A densities in the basolateral anterior, basolateral ventral and basomedial amygdaloid nuclei. Serotonergic transporter densities were also decreased in the CA3 area of the hippocampus in the non-handled group. In contrast, the maternal separation 15 min group displayed the highest serotonergic transporter and serotonergic 1A densities in the basomedial nucleus of amygdala, basolateral anterior nucleus of amygdala, basolateral ventral nucleus of amygdala and basomedial nucleus of amygdala amygdaloid nuclei. CONCLUSIONS Early life maternal separation and the extent of handling can alter adult brain serotonergic transporter and serotonergic 1A levels and function in the forebrain. Alterations in these serotonergic systems by early rearing conditions might increase vulnerability for behavioral disorders in adulthood.
Aaps Journal | 2005
Michael J. Kuhar; Jason N. Jaworski; George W. Hubert; Kelly B. Philpot; Geraldina Dominguez
Cocaine- and amphetamine-regulated transcript (CART) peptides (55 to 102 and 62 to 102) are neurotransmitters with important roles in a number of physiologic processes. They have a role in drug abuse by virtue of the fact that they are modulators of mesolimbic function. Key findings supporting a role in drug abuse are as follows. First, high densities of CART-containing nerve terminals are localized in mesolimbic areas. Second, CART 55 to 102 blunts some of the behavioral effects of cocaine and dopamine (DA). This functional antagonism suggests that CART peptides be considered as targets for medications development. Third, CREB in the nucleus accumbens has been shown to have an opposing effect on cocaine self-administration. CREB may activate CART expression in that region, and, if so, CART may mediate at least some of the effects of CREB. Fourth, in addition to the effects of CART on DA, DA can influence CART in the accumbens. Thus a complex interacting circuitry likely exists. Fifth, in humans, CART is altered in the ventral tegmental area of cocaine overdose victims, and a mutation in the CART gene associates with alcoholism.Overall, it is clear that there are functional interactions among CART, DA, and cocaine and that plausible cellular mechanisms exist to explain some of these actions. Future studies will clarify and extend these findings.
Pharmacology, Biochemistry and Behavior | 2002
Sudar Alagarsamy; Susan T. Rouse; Candace Junge; George W. Hubert; David A. Gutman; Yoland Smith; P. Jeffrey Conn
Glutamate regulates neuronal function by acting on ionotropic receptors such as the N-methyl-D-aspartate (NMDA) receptor and metabotropic receptors (mGluRs). We have previously shown that low concentrations of NMDA are able to significantly potentiate mGluR5 responses via activation of a protein phosphatase and reversal of phosphorylation-induced desensitization. While low concentrations of NMDA are able to potentiate mGluR5 responses, higher concentrations of NMDA are actually inhibitory. In this report, we show that NMDA receptors and mGluR5 are highly colocalized in cortical regions. We also show that in voltage-clamp recordings obtained from Xenopus oocytes expressing mGluR5 and NMDA receptors, high concentrations of NMDA (50-100 microM) that elicited large currents (>400 nA) caused an inhibition of mGluR5 currents. Additionally, agonist-induced phosphoinositide hydrolysis presumably mediated by activation of mGluR5, is inhibited by NMDA (30 microM and above). Additional data presented in this report suggest that the inhibitory effect of NMDA is caused by phosphorylation of mGluR5 at protein kinase C (PKC) sites since NMDA induces phosphorylation of the receptor as measured in a back phosphorylation assay.
Cell Transplantation | 1997
Thyagarajan Subramanian; Dwaine F. Emerich; Roy A. E. Bakay; John M. Hoffman; Mark M. Goodman; Timothy M. Shoup; Gary W. Miller; Allan I. Levey; George W. Hubert; Scott Batchelor; Shelly R. Winn; Joel A. Saydoff; Ray L. Watts
Intracranial implantation of polymer-encapsulated PC-12 cells has been shown to improve motor behavioral performance in animal models of Parkinsons disease. The purpose of this blinded study was to examine whether such improvement is associated with the active uptake and metabolism of dopamine precursors by intracerebrally implanted polymer-encapsulated PC-12 cells. In an in vitro experiment we demonstrate that 3H-dopamine uptake by PC-12 cells was 10(8) fmol/min x 10(6) cells, and that this uptake can be specifically blocked 88% by the addition of 10nM of nomifensine. In the in vivo experiments, polymer-encapsulated PC-12 cells were implanted in four MPTP-treated monkeys into the left deep parietal white matter (R1) or left striatum (R2-4). A fifth MPTP-treated monkey (R5) served as a control and received left striatal implants of empty capsules. 18-F-Dopa Positron Emission Tomography (PET) imaging was performed on each monkey before and after implantation surgery by blinded investigators. PET images obtained 5-13 wk after implantation demonstrated well delineated focal areas of high 18F-dopa uptake in R1, R2, and R4. The focal area of high 18F-dopa uptake in R1 precisely coregistered on a brain magnetic resonance image to the site of implantation. R3 (in whom the polymer-encapsulated PC-12 cells demonstrated poor cell survival upon explantation) and R5 (empty capsules) failed to demonstrate any area of increased 18F-dopa uptake in their PET images. Histological examination of the host brain revealed no sprouting of dopaminergic nerve terminals around the implantation sites of the polymer-encapsulated PC-12 cells. These results indicate that the previously noted behavioral improvement after intrastriatal implantation of polymer encapsulated PC-12 cells is at least in part due to their highly specific uptake and metabolism of dopamine precursors. Furthermore, these data suggest that polymer-encapsulated PC-12 cells can store, reuptake, and functionally replenish dopamine and therefore, may be an effective treatment for Parkinsons disease.
Neuropeptides | 2006
George W. Hubert; Michael J. Kuhar
CART peptide is a peptidergic neurotransmitter that is expressed in brain regions involved in critical biological processes such as feeding and stress, and in areas associated with drug reward and abuse including the dopamine-rich nucleus accumbens (NAcc), which can be considered part of the basal ganglia. Because CART has been shown to colocalize with substance P, a marker of the basal ganglia direct pathway, we now test for colocalization with other markers of the direct pathway to determine if CART colocalizes with dynorphin and dopamine D1 receptors. In the NAcc, CART peptide immunoreactivity (IR) was colocalized with prodynorphin-IR in neurons. Approximately 80.1% of CART-IR cells colocalized with prodynorphin-IR, while only 27.6% of prodynorphin-IR neurons contained CART-IR, suggesting that CART cells are a subset of dynorphin cells. In contrast, only about 25% of CART-IR cell bodies demonstrated dopamine D1 receptor-IR. Because dynorphin and D1 receptors are markers for the basal ganglia direct pathway, from the NAcc to the basal ganglia output nuclei, and because CART significantly colocalizes with these markers, some CART neurons are part of the direct pathway or some comparable pathway in the accumbens. The presence of CART in NAcc neurons and the fact that NAcc projection neurons have extensive local collaterals suggest that CART may have effects in both terminal and cell body regions of the accumbens and may therefore affect information processing in the NAcc by modulating accumbal neurons.
Brain Research | 2005
George W. Hubert; Michael J. Kuhar
CART peptide is a novel neurotransmitter that, due to its distribution in the brain and its modulation of dopamine systems, may be involved in aspects of reward and drug abuse. In the nucleus accumbens (NAcc), CART peptide immunoreactivity (IR) is colocalized with substance P-IR in neurons. Approximately 86% of CART-IR cells colocalize with substance P, while only 19% of substance P-IR neurons contain CART. CART peptide does not colocalize with enkephalin-IR in this region. The substance P-CART colocalization exists in a rostro-caudal gradient with more colocalization in rostral regions. The presence of CART in substance P NAcc neurons suggests that CART neurons may be a subset of the basal ganglia direct pathway or that CART neurons are involved in limbic projections of the NAcc, such as to the ventral pallidum.