George Zervoudakis
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George Zervoudakis.
Integrative and Comparative Biology | 2006
Christos D. Georgiou; Nikolaos Patsoukis; Ioannis Papapostolou; George Zervoudakis
Sclerotium-forming filamentous fungi are of great agricultural and biological interest because they can be viewed as models of simple metamorphosis. They differentiate by asexually producing sclerotia but the processes involved in sclerotial metamorphosis were poorly understood. In 1997, it was shown for the first time that the sclerotial differentiation state in Sclerotium rolfsii concurred with increasing levels of lipid peroxides. This finding prompted the development of a theory supporting that sclerotial metamorphosis is induced by oxidative stress. Growth factors that reduce or increase oxidative stress are expected to inhibit or promote sclerotium metamorphosis, respectively. This theory has been verified by a series of published data on the effect of certain hydroxyl radical scavengers on sclerotial metamorphosis, on the identification and quantification of certain endogenous antioxidants (such as ascorbic acid, β-carotene) in relation to the fungal undifferentiated and differentiated states, and on their inhibiting effect on sclerotial metamorphosis as growth nutrients. In 2004-2005, we developed assays for the measurement of certain redox markers of oxidative stress, such as the thiol redox state, the small-sized fragmented DNA, and the superoxide radical. These new advances allowed us to initiate studies on the exact role of glutathione, hydrogen peroxide, and superoxide radical on sclerotial metamorphosis. The emerging data, combined with similar data from other better-studied fungi, allowed us to make some preliminary postulations on the ROS-dependent biochemical signal transduction pathways in sclerotiogenic filamentous fungi.
Neuroscience Letters | 2004
Nikolaos Patsoukis; George Zervoudakis; Nikolaos Panagopoulos; Christos D. Georgiou; Fevronia Angelatou; Nikolaos Matsokis
In this study we evaluated oxidative stress (lipid peroxidation and protein oxidation) and thiol redox state [TRS: glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), protein (P) thiols (PSH) and protein and non-protein (NP) mixed/symmetric disulfides (PSSR, NPSSR, NPSSC, PSSP)] in hippocampus after pentylenetetrazol (PTZ) administration at convulsive and subconvulsive dose. The significant decrease in PSH, CSH and NPSSC, as well as the increase in PSSP, NPSSR, lipid peroxidation and protein oxidation levels after PTZ-induced seizure indicate increased oxidative damage in hippocampus, although the levels of GSH and GSSG do not change significantly.
Analytical and Bioanalytical Chemistry | 2008
Christos D. Georgiou; Konstantinos Grintzalis; George Zervoudakis; Ioannis Papapostolou
We investigated the mechanism of Coomassie brilliant blue G-250 (CBB) binding to proteins in order to develop a protein assay with the maximum possible sensitivity. We found that the neutral ionic species of CBB binds to proteins by a combination of hydrophobic interactions and heteropolar bonding with basic amino acids. On the basis of these findings, we developed a very sensitive hydrophobic assay for proteins (at the nanogram level) using the hydrophobic reagents ammonium sulfate and trichloroacetic acid under pH conditions that increase neutral species concentration in the assay reagent in order to enhance the binding of more CBB dye molecules per protein molecule than in previous CBB-based assays.
Annals of Surgery | 2005
Stelios F. Assimakopoulos; Chrisoula D. Scopa; George Zervoudakis; Panagiotis Mylonas; Christos D. Georgiou; Vassiliki Nikolopoulou; Constantine E. Vagianos
Objective:To evaluate the effect of bombesin (BBS) and neurotensin (NT) on intestinal histopathology, intestinal oxidative stress, and endotoxemia in experimental obstructive jaundice. Summary Background Data:Obstructive jaundice compromises gut barrier function, resulting in endotoxemia. BBS and NT, exerting various biologic actions on gastrointestinal tissues, preserve gut mucosal integrity in cases of injury or atrophy. Methods:Seventy male Wistar rats were randomly divided into 5 groups: I = controls, II = sham operated, III = bile duct ligation (BDL), IV = BDL + BBS (30 μg/kg/d), V = BDL + NT (300 μg/kg/d). By the end of the experiment, on day 10, endotoxin was measured in portal and aortic blood. Tissue sections of the terminal ileum were examined histologically, and villus density, mucosal thickness, mitotic activity and apoptosis in crypts were assessed. In addition, ileal mucosa was analyzed for DNA and protein content. To estimate intestinal oxidant/antioxidant equilibrium, lipid peroxidation, protein oxidation, and thiol redox state (reduced glutathione [GSH], oxidized glutathione [GSSG], total nonprotein mixed disulfides [NPSSR], protein thiols [PSH], and protein disulfides [PSSP]) were determined on tissue homogenates from the terminal ileum. Results:BBS or NT administration significantly reduced portal and systemic endotoxemia observed in obstructive jaundice. Both factors reversed obstructive jaundice-induced morphologic features of intestinal atrophy, increasing villus density and mucosal thickness. This effect was accompanied by induction of mitoses and reduction of apoptosis in intestinal crypts. Mucosal DNA and protein content were reduced, although not to significant levels, in BDL animals and restored to control levels after BBS or NT treatment. Moreover, BBS or NT administration protected the intestine in jaundiced rats against oxidative stress, as demonstrated by reduction of intestinal lipid peroxidation, increase of the antioxidant GSH, and decrease of the oxidized forms GSSG and NPSSR, while BBS additionally reduced protein oxidation as well. Conclusions:Administration of BBS or NT in bile duct–ligated rats exerts beneficial effects on intestinal oxidative stress, cell proliferation, apoptosis, and endotoxemia. This observation might be of potential value in patients with extrahepatic cholestasis.
Epilepsy Research | 2004
Nikolaos Patsoukis; George Zervoudakis; Christos D. Georgiou; Fevronia Angelatou; Nikolaos Matsokis; Nikolaos Panagopoulos
In the present study we examined the effects of pentylenetetrazol (PTZ) administration on the thiol redox state (TRS), lipid peroxidation and protein oxidation in left and right mouse cerebral cortex in order (a) to quantitate the major components of the thiol redox state and relate them with oxidative stress and cortical laterality, and (b) to investigate whether neuronal activation without synchronization, induced by subconvulsive doses of PTZ, can cause similar qualitative effects on the thiol redox state. Specifically, we examined the TRS components [glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), protein (P) thiols (PSH) and protein and non-protein (NP) mixed/symmetric disulfides (PSSR, NPSSR, NPSSC, PSSP)]. At 15 min after seizure, GSH, GSSG, CSH, NPSSC, PSSR and PSSC levels are decreased in left (14-50%) and right (11-53%) cortex while PSSP levels are increased in both left (1400%) and right (1600%) cortex. At 30 min after seizure, GSSG, CSH, NPSSC, PSSR and PSSC levels are decreased in left (14-51%) and right (18-56%) cortex while PSSP and protein carbonyl levels are increased in left (2300% and 20%, respectively) and right (2800% and 21%, respectively) cortex. At 24 h after seizure, the TRS components return to normal and protein carbonyl levels are decreased in left (16%) and right (20%) cortex. The significant decrease in GSH, GSSG, CSH, NPSSC, PSSR and PSSC, as well as the increase in protein carbonyl and the high increase in PSSP levels after PTZ-induced seizure indicate increased oxidative stress in cerebral cortex of mice, and of similar magnitude and TRS-component profiles between left and right cerebral cortex.
Mycologia | 2003
Christos D. Georgiou; George Zervoudakis; Katerine P. Petropoulou
Certain phytopathogenic fungi differentiate by forming sclerotia by an unclear biochemical mechanism. We have proposed that sclerotial differentiation might be regulated by fungal antioxidant defense. Part of this defense might be ascorbic acid, which in its reduced form is a well-known antioxidant. This natural antioxidant was studied in Sclerotium rolfsii in relation to oxidative-growth conditions, developmental stages and strain-differentiating ability. The transition of a sclerotial strain from the undifferentiated to the differentiated stage was accompanied by a sharp shift in the ratio of reduced/oxidized ascorbate toward the oxidized form. Ascorbate profiles and lipid peroxidation levels were different between the sclerotial strain grown under high- and low-oxidative stress conditions, as well as between a nonsclerotial S. rolfsii strain grown under high-oxidative stress conditions. In addition, the ratio of reduced/oxidized ascorbate in the nonsclerotial strain remained unchanged throughout growth. Lipid peroxidation under high-oxidative stress conditions in sclerotial S. rolfsii colonies one day before differentiation was 3.6-fold higher than in same-day colonies of this strain grown under low-oxidative stress conditions and 2.5-fold higher than in similar-day colonies of the nonsclerotial strain grown under high-oxidative stress conditions. Exogenous ascorbate caused a concentration-dependent reduction of lipid peroxidation and a proportional inhibition of the degree of sclerotial differentiation in the sclerotial strain grown under high-oxidative stress conditions by lowering its lipid peroxidation before differentiation to levels similar to the strain grown under low-oxidative stress conditions and to the nonsclerotial strain. Ascorbic acid might be produced by the sclerotial strain to reduce oxidative stress, although less efficiently than the nondifferenting strain. The data of this study support our theory that oxidative stress might be the triggering factor of sclerotial differentiation in phytopathogenic fungi.
Epilepsia | 2005
Nikolaos Patsoukis; George Zervoudakis; Christos D. Georgiou; Fevronia Angelatou; Nikolaos Matsokis; Nikolaos Panagopoulos
Summary: Purpose: In the present study, we examined the effects of pentylenetetrazol (PTZ) administration on the thiol redox state (TRS), lipid peroxidation, and protein oxidation in the mouse striatum to (a) quantitate the major components of TRS and relate them to oxidative stress, and (b) investigate whether neuronal activation without synchronization, induced by subconvulsive doses of PTZ, can cause similar qualitative effects on TRS in this brain area. Specifically, we examined the TRS components glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), protein thiols (PSH), and the protein (P) and nonprotein (NP/R) disulfides PSSR, NPSSR, NPSSC, and PSSP.
Fungal Biology | 2003
George Zervoudakis; Nikolaos Tairis; George Salahas; Christos D. Georgiou
Sclerotinia minor accumulates beta-carotene at levels dependent upon oxidative growth conditions and differentiation. Beta-carotene accumulation is 2.5-fold higher in differentiated mycelia at high than at low oxidative stress, and approx. 3-fold higher in differentiated than in undifferentiated mycelia. It is proposed that beta-carotene may be produced by the fungus to counteract oxidative stress that develops during growth. This is shown by the finding that exogenous beta-carotene at growth non-inhibiting concentrations causes a concentration-dependent reduction of oxidative stress (lipid and protein peroxidation) and sclerotial differentiation in this fungus. The data of this study support our hypothesis that sclerotial differentiation in phytopathogenic fungi may be induced by oxidative stress.
Neuroscience Letters | 2005
Nikolaos Patsoukis; Ioannis Papapostolou; George Zervoudakis; Christos D. Georgiou; Nikolaos Matsokis; Nikolaos Panagopoulos
In this study we measured thiol redox state (TRS) and the oxidative stress indicator lipid peroxidation in midbrain and striatum of adult (4 months old) male control (+/+) and weaver (wv/wv) mice in order to relate them with oxidative stress in conditions of progressive and severe (approximately 70%) nigrostriatal dopaminergic neurodegeneration. Specifically, we measured the specific TRS components glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), and the general classes of TRS components. The latter are the protein thiols (PSH) and the disulfides between (a) protein (P) and protein thiols (PSSP), (b) protein and non-protein (NP/R) thiols (PSSR, PSSC) and (c) non-protein and non-protein thiols (NPSSR, NPSSC). In addition, the main product of lipid peroxidation malonyl dialdehyde (MDA) was estimated. In the midbrain of wv/wv, GSH and NPSSC levels are decreased (44% and 64%, respectively) and GSSG, NPSSR, CSH, PSH, PSSP, PSSR and MDA levels are increased (23%, 660%, 110%, 51%, 68%, 18% and 44%, respectively). In the striatum of male wv/wv, protein and non-protein thiol/disulfide and MDA levels do not change, possibly due to the high decrease in striatal dopamine level versus midbrain. Our data show that the high degeneration of the dopaminergic nigrostriatal neurons in male adult wv/wv mice is accompanied by significant changes in TRS and an increase in lipid peroxidation in the midbrain, suggesting involvement of oxidative stress in the degeneration of dopaminergic neurons. They also strengthen the possible use of thiol antioxidants for the development of new neuroprotective therapeutic strategies for neurodegenerative diseases, such as Parkinsons disease.
Brazilian Archives of Biology and Technology | 2012
George Zervoudakis; George Salahas; George Kaspiris; Eleni Konstantopoulou
The aim of this work was to investigate the effects of four different light intensities on the growth characteristics, physiological parameters and leaf photosynthetic pigments of Salvia officinalis L. The plants dry mass, number of the leaves and physiological parameters indicated a strong positive correlation with the light intensity. On the other hand, the plants height and leaf photosynthetic pigments were increased at low light treated plants. These results suggest that the aromatic herb Salvia officinalis L. is adaptable to different light environments.