Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georges Chalepakis is active.

Publication


Featured researches published by Georges Chalepakis.


Nature Genetics | 2003

Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein.

Lm McGregor; Vile Makela; S Darling; Sofia Vrontou; Georges Chalepakis; Catherine Roberts; Nicola Smart; Paul Rutland; Natalie J. Prescott; Jason Hopkins; Elizabeth Bentley; Alison Shaw; Emma Roberts; Robert F. Mueller; Shalini Jadeja; Nicole Philip; John Nelson; Christine Francannet; Antonio Perez-Aytes; André Mégarbané; Bronwyn Kerr; Brandon J. Wainwright; Adrian S. Woolf; Robin M. Winter; Peter J. Scambler

Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.


Nature Genetics | 2005

Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs

Shalini Jadeja; Ian Smyth; Jolanta E. Pitera; Martin S. Taylor; Mieke M. van Haelst; Elizabeth Bentley; Lm McGregor; Jason Hopkins; Georges Chalepakis; Nicole Philip; Antonio Perez Aytes; Fiona M. Watt; S Darling; Ian J. Jackson; Adrian S. Woolf; Peter J. Scambler

Fraser syndrome is a recessive, multisystem disorder presenting with cryptophthalmos, syndactyly and renal defects and associated with loss-of-function mutations of the extracellular matrix protein FRAS1. Fras1 mutant mice have a blebbed phenotype characterized by intrauterine epithelial fragility generating serous and, later, hemorrhagic blisters. The myelencephalic blebs (my) strain has a similar phenotype. We mapped my to Frem2, a gene related to Fras1 and Frem1, and showed that a Frem2 gene-trap mutation was allelic to my. Expression of Frem2 in adult kidneys correlated with cyst formation in my homozygotes, indicating that the gene is required for maintaining the differentiated state of renal epithelia. Two individuals with Fraser syndrome were homozygous with respect to the same missense mutation of FREM2, confirming genetic heterogeneity. This is the only missense mutation reported in any blebbing mutant or individual with Fraser syndrome, suggesting that calcium binding in the CALXβ-cadherin motif is important for normal functioning of FREM2.


Nature Genetics | 2004

A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1

Kogo Takamiya; Vassiliki Kostourou; Susanne Adams; Shalini Jadeja; Georges Chalepakis; Peter J. Scambler; Richard L. Huganir; Ralf H. Adams

Cell adhesion to extracellular matrix (ECM) proteins is crucial for the structural integrity of tissues and epithelial-mesenchymal interactions mediating organ morphogenesis. Here we describe how the loss of a cytoplasmic multi-PDZ scaffolding protein, glutamate receptor interacting protein 1 (GRIP1), leads to the formation of subepidermal hemorrhagic blisters, renal agenesis, syndactyly or polydactyly and permanent fusion of eyelids (cryptophthalmos). Similar malformations are characteristic of individuals with Fraser syndrome and animal models of this human genetic disorder, such as mice carrying the blebbed mutation (bl) in the gene encoding the Fras1 ECM protein. GRIP1 can physically interact with Fras1 and is required for the localization of Fras1 to the basal side of cells. In one animal model of Fraser syndrome, the eye-blebs (eb) mouse, Grip1 is disrupted by a deletion of two coding exons. Our data indicate that GRIP1 is required for normal cell-matrix interactions during early embryonic development and that inactivation of Grip1 causes Fraser syndrome–like defects in mice.


Nature Genetics | 2003

Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice.

Sophia Vrontou; Petros Petrou; Barbara Meyer; Vassilis Galanopoulos; Kenji Imai; Masayuki Yanagi; Kamal Chowdhury; Peter J. Scambler; Georges Chalepakis

Loss of tight association between epidermis and dermis underlies several blistering disorders and is frequently caused by impaired function of extracellular matrix (ECM) proteins. Here we describe a new protein in mouse, Fras1, that is specifically detected in a linear fashion underlying the epidermis and the basal surface of other epithelia in embryos. Loss of Fras1 function results in the formation of subepidermal hemorrhagic blisters as well as unilateral or bilateral renal agenesis during mouse embryogenesis. Postnatally, homozygous Fras1 mutants have fusion of the eyelids and digits and unilateral renal agenesis or dysplasia. The defects observed in Fras1−/− mice phenocopy those of the existing bl (blebbed) mouse mutants, which have been considered a model for the human genetic disorder Fraser syndrome. We show that bl/bl homozygous embryos are devoid of Fras1 protein, consistent with the finding that Fras1 is mutated in these mice. In sum, our data suggest that perturbations in the composition of the extracellular space underlying epithelia could account for the onset of the blebbed phenotype in mouse and Fraser syndrome manifestation in human.


The International Journal of Biochemistry & Cell Biology | 2011

The role of Fras1/Frem proteins in the structure and function of basement membrane

Evangelos Pavlakis; Rena Chiotaki; Georges Chalepakis

Basement membranes constitute architecturally complex extracellular matrix (ECM) protein networks of great structural and regulatory importance. Recently, a novel group of basement membrane proteins, Fras1 (Fraser syndrome protein (1) and the Fras1-related extracellular matrix proteins Frem1, Frem2 and Frem3, has emerged. They comprise components of the sublamina densa region and contribute to embryonic epithelial-mesenchymal integrity. Fras1/Frem share common polypeptide repetitive motifs with possible interactive and organizing functions. Mutations in genes encoding Fras1, Frem1 and Frem2 are causative for dermal-epidermal detachment in the plane of sublamina densa and have been identified in different classes of mouse bleb mutants, the murine model of human Fraser syndrome, the hallmark phenotypic characteristics of which are embryonic skin blistering, cryptophthalmos and renal agenesis. Indeed, defects in FRAS1 and FREM2 have been identified in Fraser syndrome patients. The phenotypic similarity of mouse bleb mutant strains can be attributed to the fact that Fras1, Frem1 and Frem2 have been experimentally shown to interact, forming a mutually stabilized protein complex, while Frem3, which has not yet been associated with any of the existing known mutations, operates in a more independent fashion. Fras1/Frem have been recently proposed to compensate for the activity of collagen VII, a major anchoring component of the sublamina densa, the levels of which rise only during late embryonic life. By focusing on the aforementioned data, in this review we will summarize the current knowledge about Fraser syndrome proteins and describe their contribution to basement membrane biology.


Connective Tissue Research | 2008

The Fras1/Frem Family of Extracellular Matrix Proteins: Structure, Function, and Association with Fraser Syndrome and the Mouse bleb Phenotype

Petros Petrou; Apostolos K. Makrygiannis; Georges Chalepakis

Fras1 and the structurally related proteins Frem1, Frem2, and Frem3, comprise a novel family of extracellular matrix proteins, which localize in a similar fashion underneath the lamina densa of epithelial basement membranes. They are involved in the structural adhesion of the skin epithelium to its underlying mesenchyme. Deficiency in the individual murine Fras1/Frem genes gives rise to the bleb phenotype, which is equivalent to the human hereditary disorder Fraser syndrome, characterized by cryptophthalmos (hidden eyes), embryonic skin blistering, renal agenesis, and syndactyly. Recent studies revealed a functional cooperation between the Fras1/Frem gene products, in which Fras1, Frem1 and Frem2 are simultaneously stabilized at the lowermost region of the basement membrane by forming a macromolecular ternary complex. Loss of any of these proteins results in the collapse of the protein assembly, thus providing a molecular explanation for the highly similar phenotypic defects displayed by the respective mutant mice. Here, we summarize the current knowledge regarding the structure, function, and interplay between the proteins of the Fras1/Frem family and further propose a possible scenario for the evolution of the corresponding genes.


Journal of Biological Chemistry | 2005

Basement Membrane Distortions Impair Lung Lobation and Capillary Organization in the Mouse Model for Fraser Syndrome

Petros Petrou; Evangelos Pavlakis; Yannis Dalezios; Vassilis Galanopoulos; Georges Chalepakis

Fras1 is a putative extracellular matrix protein that has been implicated in the structural adhesion of embryonic epidermis to dermis. Moreover, mutations in Fras1/FRAS1 have been associated with the mouse blebbed phenotype and the human rare genetic disorder Fraser syndrome, respectively. Here we report the mapping of Fras1 within the extracellular space and evaluate the effects of Fras1 deficiency on lung development in the mouse. Expression of Fras1 was detected in the mesothelial cells of the visceral pleura and in the conducting airway epithelia. Immunogold histochemistry identified Fras1 as a component of the extracellular matrix localized below the lamina densa of epithelial basement membranes in the embryonic lung. Embryos homozygous for a targeted mutation of Fras1 exhibited fused pulmonary lobes resulting from incomplete separation during development as well as a profound disarrangement of blood capillaries in the terminal air sacs. We demonstrate that loss of Fras1 causes alterations in the molecular composition of basement membranes, concomitant with local disruptions of epithelial-endothelial contacts and extravasation of erythrocytes into the embryonic respiratory lumen. Thus, our findings identify Fras1 as an important structural component of the sub-lamina densa of basement membranes required for lobar septation and the organization of blood capillaries in the peripheral lung.


Archives of Dermatological Research | 2007

Ultrastructural localization of Fras1 in the sublamina densa of embryonic epithelial basement membranes

Yannis Dalezios; Babis Papasozomenos; Petros Petrou; Georges Chalepakis

Fras1 is the first identified member of a protein family comprising Fras1 and the related extracellular matrix proteins Frem1, Frem2 and Frem3. Mutations in Fras1, Frem1 and Frem2 have been associated with the bleb phenotype in mouse, whereas mutations in the human orthologs FRAS1 and FREM2 have been implicated in the pathogenesis of the human Fraser syndrome. Bleb mutant mice are characterized by embryonic sub-epidermal blistering, unilateral or bilateral renal agenesis or dysgenesis, cutaneous syndactyly and fused eyelids. As revealed by immunofluorescence, Fras1 co-localizes with the markers of epithelial basement membranes and is ultrastructurally detected underneath the lamina densa of embryonic mouse epithelia. Since the loss of Fras1 mainly affects the cohesiveness of the embryonic skin basement membrane with its underlying mesenchyme, we compared here the ultrastructural localization of Fras1 in the dermal–epidermal junction and in the basement membrane of other embryonic epithelia that do not show any overt phenotype using preembedding immunocytochemistry. Fras1 immunoreactivity was detected in all epithelia examined, within the sublamina densa adjacent to stromal tissue, as clustered gold/silver enhanced depositions, usually attached to anchoring fibrils. Interestingly, clusters corresponding to Fras1 were frequently detected in close proximity to mesenchymal cells, indicating that Fras1 could serve as a direct link between the sublamina densa and mesenchyme. The localization of Fras1 is consistent with previous results indicating that Fras1 exerts its function below the lamina densa and that Fras1 displays the same localization pattern in all epithelial basement membranes.


Histochemistry and Cell Biology | 2008

Differential localization profile of Fras1/Frem proteins in epithelial basement membranes of newborn and adult mice

Evangelos Pavlakis; Apostolos K. Makrygiannis; Rena Chiotaki; Georges Chalepakis

The Fras1/Frem gene family encodes for structurally similar proteins of the extracellular matrix, functionally correlated with embryonic dermal–epidermal adhesion as deduced from the appearance of sub-epidermal blisters in mouse mutants compromising the function of Fras1, Frem1 and Frem2 proteins. Mutations in the human counterparts FRAS1 and FREM2 have been detected in patients suffering from Fraser syndrome. So far, Fras1/Frem proteins have been shown to be strictly colocalized in the sublamina densa of mouse epithelial basement membranes during development. Here, we focused on the characterization of the localization pattern of the aforementioned proteins, in various parts of the adult mouse skin as well as a range of organs and tissues. Frem3 was present in a broad range of epithelial basement membranes where Fras1, Frem1 and Frem2 were missing. The localization profile of Frem3 coincided with that of collagen VII in all skin basement membranes but differed in that Frem3 was additionally found in the basement membrane of several internal epithelia, where collagen VII was absent. Fras1 and Frem2 were colocalized with Frem3 in the basement membrane of certain skin parts, underlying the thin-layer, of rapidly proliferating keratinocytes, whereas Frem1 was detected only in the basement membrane of the tail. The localization pattern of Fras1 and Frem2 was indistinguishable, while both proteins along with Frem3 could be detected even in the absence of Frem1.


Applied Immunohistochemistry & Molecular Morphology | 2008

pH-dependent antigen unmasking in paraformaldehyde-fixed tissue cryosections.

Evangelos Pavlakis; Georges Chalepakis

Fras1/Frem family of basement membrane proteins has been associated with the “bleb” phenotype in mouse and the Fraser syndrome in man. Fras1 and Frem2 proteins are known to be colocalized in all epithelial basement membranes during embryonic development. The functional significance of their colocalization has been demonstrated in the corresponding mouse mutants, where the absence of Fras1 results in complete depletion of Frem2 from epithelial basement membranes and vice versa. Nevertheless, under standard immunohistochemical procedures, we were able to detect Fras1, but not Frem2, in the basement membrane of adult mouse tail skin. After reevaluation of our protocol, we established 15-minute acidic buffer treatment to be of critical value upon Frem2 immunodetection, essentially operating as an antigen retrieval process. Testing more polyclonal antibodies revealed no negative effects, but rather reinforced the positive signal, rendering this technique suitable for incorporation to any standard immunohistochemical procedure.

Collaboration


Dive into the Georges Chalepakis's collaboration.

Top Co-Authors

Avatar

Petros Petrou

The Cyprus Institute of Neurology and Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shalini Jadeja

University College London

View shared research outputs
Top Co-Authors

Avatar

Lm McGregor

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge