Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georges Daoud is active.

Publication


Featured researches published by Georges Daoud.


The Journal of Physiology | 2005

ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta

Georges Daoud; Marc Amyot; Eric Rassart; André Masse; Lucie Simoneau; Julie Lafond

Mitogen‐activated protein kinases (MAPKs) control many cellular events from complex programmes, such as embryogenesis, cell differentiation and proliferation, and cell death, to short‐term changes required for homeostasis and acute hormonal responses. However, little is known about expression and activation of classical MAPKs, extracellular signal‐regulated kinase1/2 (ERK1/2) and p38 in human placenta. Therefore, we examined the expression of ERK1/2 and p38 in trophoblasts from human term placenta, and their implication in differentiation. In vitro, freshly isolated cytotrophoblast cells, cultivated in 10% fetal bovine serum (FBS), spontaneously aggregate and fuse to form multinucleated cells that phenotypically resemble mature syncytiotrophoblasts, that concomitantly produce human chorionic gonadotropin (hCG) and human placental lactogen (hPL). This study shows that the level of ERK1/2 and p38 decreases with increasing days of culture, to reach an undetectable level after 5 days of culture. Moreover, pretreatment of cells with an ERK1/2‐specific inhibitor (PD98059) and/or a p38‐specific inhibitor (SB203580) suppressed trophoblast differentiation. Our results also demonstrate that the p38 pathway is highly solicited as compared to the ERK1/2 pathway in the differentiation process. Furthermore, ERK1/2 and p38 are rapidly activated upon addition of FBS, but the activation of p38 is delayed compared to that of ERK1/2. In summary, this study showed that ERK1/2 and p38 pathways are essential to mediate initiation of trophoblast differentiation.


Biochimica et Biophysica Acta | 2002

Calcium uptake and calcium transporter expression by trophoblast cells from human term placenta

Robert Moreau; Georges Daoud; Renée Bernatchez; Lucie Simoneau; André Masse; Julie Lafond

Placental transfer of maternal calcium (Ca(2+)) is a crucial step for fetal development although the biochemical mechanisms responsible for this process are largely unknown. This process is carried out in vivo by the placental syncytiotrophoblast layer. The aim of this study was to define the membrane gates responsible for the syncytiotrophoblast Ca(2+) entry, the first step in transplacental transfer. We have investigated the basal Ca(2+) uptake by primary culture of human term placenta syncytiotrophoblast. Kinetic studies revealed an active extracellular Ca(2+) uptake by cultured human syncytiotrophoblast. We demonstrated by Northern blot the presence of transcript for calcium transporter type 1 (CaT1) in cultured human syncytiotrophoblast and CaT1 expression was further confirmed by reverse transcription polymerase chain reaction (RT-PCR). In addition, the expression of calcium transporter type 2 (CaT2) was revealed by RT-PCR in cultured human syncytiotrophoblast. It has been reported that the activity of this family of Ca(2+) channels is voltage-independent, and is not sensitive to L-type Ca(2+) channels agonist and antagonist. Interestingly, modulation of membrane potential by extracellular high potassium concentration and valinomycin had no effect on the basal Ca(2+) uptake of human syncytiotrophoblast. Moreover, the addition of L-type Ca(2+) channel modulators (Bay K 8644 and nitrendipine) to the incubation medium had also no effect on the basal Ca(2+) uptake, suggesting that the process is mainly voltage-independent and does not involved L-type Ca(2+) channels. On the other hand, we observed that two known blockers of CaT-mediated Ca(2+) transport, namely extracellular magnesium (Mg(2+)) and ruthenium red, dose-dependently inhibited Ca(2+) uptake by cultured human syncytiotrophoblast. Therefore, our results suggest that basal Ca(2+) uptake of human syncytiotrophoblast may be assured by CaT1 and CaT2.


Biology of Reproduction | 2002

Expression of Calcium Channels along the Differentiation of Cultured Trophoblast Cells from Human Term Placenta

Robert Moreau; Annie Hamel; Georges Daoud; Lucie Simoneau; Julie Lafond

Abstract Placental transfer of maternal calcium (Ca2+) is carried out in vivo by the syncytiotrophoblast layer. Although this process is crucial for fetal development, it remains poorly understood. Cytotrophoblasts isolated from human term placenta undergo spontaneous syncytiotrophoblast-like morphological and biochemical differentiation in vitro and are thought to reflect in vivo syncytiotrophoblast. In the present study, we characterized the Ca2+ uptake potential and the expression of several Ca2+ channels by human trophoblasts during differentiation in vitro for up to 6 days. Secretion of hCG (specific differentiation marker) and uptake of Ca2+ by trophoblasts increased gradually as a function of days in culture. Both hCG secretion and Ca2+ uptake were maximal on Day 4 and declined on Days 5–6. Expression of the Ca2+ transporter proteins CaT1 and CaT2 was revealed by reverse transcription-polymerase chain reaction in cytotrophoblasts freshly isolated from human term placenta. In addition, messengers for two L-type Ca2+ channel isoforms (α1C and α1D) were also detected. Levels of CaT1, CaT2, and L-type Ca2+ channel mRNA increased gradually during culture, reaching a maximum between Days 2 and 3. In contrast to CaT1 and CaT2 expression that declined thereafter to levels observed on Day 1, L-type channel expression decreased by 50% but remained above the expression level of Day 1. Our results indicate that the pattern of CaT1 and CaT2 expression correlates with the Ca2+ uptake potential along the differentiation of cultured human trophoblasts isolated from term placenta. This correlation provides circumstantial evidence for a role of this family of channels in basal Ca2+ uptake by the syncytiotrophoblast.


Mini-reviews in Medicinal Chemistry | 2009

Involvement of MAPK signalling in human villous trophoblast differentiation.

Cathy Vaillancourt; D. Lanoix; F. Le Bellego; Georges Daoud; Julie Lafond

Human villous trophoblast differentiation is a complex and highly regulated process essential for the well-being of the pregnancy and fetal development. In this review, we present an overview of the role of MAPKs signalling in morphological and functional differentiation of villous trophoblast.


The Journal of Physiology | 2006

Src family kinases play multiple roles in differentiation of trophoblasts from human term placenta

Georges Daoud; Eric Rassart; André Masse; Julie Lafond

Tyrosine phosphorylation plays a major role in controlling many biological processes in different cell types. Src family kinases (SFKs) are one of the most studied groups of tyrosine kinases and can mediate a variety of signalling pathways. However, little is known about the expression of SFKs in human term placenta and their implication in trophoblast differentiation. Therefore, we examined the expression profile of SFK members over time in culture and their implication in differentiation. In vitro, freshly isolated cytotrophoblast cells, cultured in 10% fetal bovine serum (FBS), spontaneously aggregate and fuse to form multinucleated cells that resemble phenotypically mature syncytiotrophoblasts, that concomitantly produce human chorionic gonadotropin (hCG) and human placental lactogen (hPL). In this study, we showed that trophoblasts expressed all SFK members and some of them are expressed as different splice variants. Moreover, using real‐time PCR, this study showed two different expression profiles of SFKs in human trophoblasts during culture. In addition, the protein level and phosphorylation status of Src were evaluated using specific antibodies. Src was rapidly phosphorylated at Tyr‐416 and dephosphorylated at Tyr‐527 after FBS addition. Surprisingly, inhibition of SFKs by 4‐amino‐5‐(4‐chlorophenyl)‐7‐(t‐butyl) pyrazolo[3,4‐d] pyrimidine (PP2) or herbimycin A had different effects on trophoblast differentiation. While herbimycin A inhibited morphological and hormonal differentiation, PP2 stimulated hormonal differentiation and inhibited cell adhesion and spreading with no effect on cell fusion. In summary, this study showed that SFKs play different roles in trophoblast differentiation, probably depending on SFK members activated. Thus, this study increases our knowledge and understanding of pathology related to impaired trophoblast differentiation such as pre‐eclampsia and trophoblast neoplasm.


Frontiers in Physiology | 2016

Poly Cystic Ovarian Syndrome: An Updated Overview.

Samer El Hayek; Lynn Bitar; Layal Hamdar; Fadi Mirza; Georges Daoud

Poly Cystic Ovarian Syndrome (PCOS) is one of the most common metabolic and reproductive disorders among women of reproductive age. Women suffering from PCOS present with a constellation of symptoms associated with menstrual dysfunction and androgen excess, which significantly impacts their quality of life. They may be at increased risk of multiple morbidities, including obesity, insulin resistance, type II diabetes mellitus, cardiovascular disease (CVD), infertility, cancer, and psychological disorders. This review summarizes what the literature has so far provided from guidelines to diagnosis of PCOS. It will also present a general overview about the morbidities associated with this disease, specifically with its more severe classic form. Finally, the review will stress on the various aspects of treatment and screening recommendations currently used in the management of this condition.


Placenta | 2003

Differential Expression of Membrane and Soluble Adenylyl Cyclase Isoforms in Cytotrophoblast Cells and Syncytiotrophoblasts of Human Placenta

R Bernatchez; L Belkacemi; Eric Rassart; Georges Daoud; Lucie Simoneau; Julie Lafond

Adenylyl cyclase (AC) activity is ubiquitous in mammalian cells, and various forms of this enzyme exist that widely differ with regard to tissue distribution, abundance, and modes of regulation. Human placenta is made, among others, of cytotrophoblast cells and syncytiotrophoblasts. This latter is a polynucleate structure that originates from the differentiation of proliferative mononucleated cytotrophoblast cells, the placental stem cell, into syncytiotrophoblasts. In vitro, this differentiation process is associated with a concomitant increase in cellular levels of cAMP and enhanced expression of genes representative of syncytiotrophoblasts endocrine activity. Thus, in this study we evaluated the differential distribution of AC isoforms in cytotrophoblast cells and syncytiotrophoblasts by reverse transcription-polymerase chain reaction (RT-PCR) using total RNA or purified mRNA. Our results demonstrate that all membrane and soluble AC mRNA isoforms are present in both cell types. Interestingly in syncytiotrophoblasts, AC4 and AC8 mRNA are highly expressed, while AC1, AC2 mRNA are less abundant when compared to cytotrophoblast cells. Additionally, the soluble AC is expressed in both trophoblast cells, but its expression is greatly reduced in differentiated cells, syncytiotrophoblasts. The presence of these AC proteins in both cells was confirmed by Western blotting. Taken together, these data help us to characterize the different AC isoforms in human cytotrophoblast cells and syncytiotrophoblasts, and demonstrate that the AC isoforms expression seems to be mainly modulated in groups 1 and 2. Moreover, the important decrease of the soluble AC isoform in syncytiotrophoblasts as compared to cytotrophoblast cells could suggest an important role of this AC in the extravillous trophoblast formation.


Placenta | 2008

PP2 Regulates Human Trophoblast Cells Differentiation by Activating p38 and ERK1/2 and Inhibiting FAK Activation

Georges Daoud; F. Le Bellego; Julie Lafond

Throughout gestation, fetal growth and development depend, in part, on placental transfer of nutrients from the maternal circulation. This latter function depends on multinucleated, terminally differentiated syncytiotrophoblasts. In vitro, freshly isolated cytotrophoblast cells differentiate spontaneously into syncytiotrophoblast in the presence of fetal bovine serum (FBS). We have previously showed that trophoblast differentiation is regulated by ERK1/2 and p38. Moreover, we showed that PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3, 4-d]pyrimidine], a Src family kinase (SFK) specific inhibitor, stimulates biochemical trophoblast cells differentiation while it inhibits cell adhesion and spreading without affecting cell fusion. Therefore, we examined the mechanisms by which PP2 modulates trophoblast cells differentiation. This study shows that PP2 stimulates ERK1/2 and p38 activation after 24h of treatments and up to 3 days while it inhibits focal adhesion kinase (FAK) phosphorylation at many sites including Tyr-397, 407, 576 and 577. Furthermore, we showed that transient activation of ERK1/2 by FBS is independent of SFK and that PP2 induces rapid activation of p38. Moreover, the kinase activity of SFK is negatively regulated by the phosphorylation of their carboxy (C)-terminal regulatory tyrosines by specific proteins called carboxyl-terminal Src kinase (Csk) and Csk homologous kinase (CHK). We showed the expression of Csk and CHK in human trophoblast cells. In summary, this study showed that PP2 stimulates the biochemical differentiation of trophoblast cells by stimulating p38 and ERK1/2 while it inhibits the morphological differentiation by inhibiting FAK activation.


Placenta | 2017

HTR-8/SVneo cell line contains a mixed population of cells

Wassim Abou-Kheir; Joanna Barrak; Ola Hadadeh; Georges Daoud

INTRODUCTION The placenta, a transient organ in humans, is essential for pregnancy maintenance and fetal development. Trophoblast and stromal cells are the main cell types present in human placenta. Trophoblast cells are derivatives of the trophectoderm layer and fulfill the endocrine, exchange, invasion and implantation processes of the placenta, whereas stromal cells are of extraembryonic mesenchymal origin and are important for villous formation and maintenance. Different cell lines were developed to study trophoblast functions including BeWo, JEG-3 and JAR from chorioncarcinoma while HTR-8/SVneo was developed using first trimester extravillous trophoblast infected with simian virus 40 large T antigen (SV40). These cell lines are largely used to study trophoblast functions including cell fusion, migration and invasion. Therefore, the purity of each cell lines is crucial in order to be able to use them as a model recapitulating trophoblast cells. METHODS HTR-8/SVneo, BeWo, JEG-3 and JAR were analyzed for epithelial and mesenchymal markers using immunofluorescence, real time PCR and Western blot. RESULTS Our results showed that HTR-8/SVneo cell line contains two populations of cells suggesting the presence of trophoblast and stromal/mesenchymal cells. While all cells in BeWo, JEG-3 and Jar are positive for the trophoblast/epithelial marker CK7, HTR-8/SVneo cells contained few clusters of CK7 positive cells. Interestingly, vimentin expression was detected in a subset of HTR-8/SVneo cells and was completely absent from all other tested placental cell lines. DISCUSSION Our results unveil the presence of a heterogeneous population of trophoblast and stromal cells within HTR-8/SVneo cell line. This mixed population of cells should be taken into consideration when using this cell line to study trophoblast functions.


Development | 2014

BMP-mediated induction of GATA4/5/6 blocks somitic responsiveness to SHH

Georges Daoud; Hervé Kempf; Deepak Kumar; Elena Kozhemyakina; Tamara Holowacz; Dae-Won Kim; Andreia Ionescu; Andrew B. Lassar

The relative timing of SHH and BMP signals controls whether presomitic mesoderm (PSM) cells will adopt either a chondrogenic or lateral plate mesoderm fate. Here we document that SHH-mediated induction of Nkx3.2 maintains the competence of somitic cells to initiate chondrogenesis in response to subsequent BMP signals by repressing BMP-dependent induction of GATA genes. Conversely, administration of BMP signals to PSM or forced expression of GATA family members in chick PSM explants blocks induction of hedgehog-dependent gene expression. We demonstrate that GATA factors can interact with Gli factors and can recruit the transcriptional co-factor FOG1 (ZFPM1) to the regulatory region of the mouse Gli1 gene, repressing the induction of Gli1 by SHH by binding to both GATA and Gli binding sites. Knockdown of FOG1 reverses the ability of GATA factors to repress Gli1 expression. Our findings uncover a novel role for GATA transcription factors as repressors of hedgehog signaling, and document that NKX3.2 maintains the ability of sclerotomal cells to express SHH transcriptional targets in the presence of BMP signals by repressing the induction of Gata4/5/6.

Collaboration


Dive into the Georges Daoud's collaboration.

Top Co-Authors

Avatar

Wassim Abou-Kheir

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Julie Lafond

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Tarek H. Mouhieddine

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Assaad A. Eid

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Firas Kobeissy

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Lucie Simoneau

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Alissar Monzer

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Hisham Bahmad

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

André Masse

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Amaly Nokkari

American University of Beirut

View shared research outputs
Researchain Logo
Decentralizing Knowledge