Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georges Férard is active.

Publication


Featured researches published by Georges Férard.


Clinical Chemistry and Laboratory Medicine | 2002

IFCC primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of enzymes at 37 °C. Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase

Gerhard Schumann; Roberto Bonora; Ferruccio Ceriotti; Clerc-Renaud P; Ferrero Ca; Georges Férard; Franck Pf; Gella Fj; Wieland Hoelzel; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Kristiansen N; Lessinger Jm; Thomas P. J. Linsinger; Misaki H; Mauro Panteghini

Abstract This paper is the second in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37°C. A document describing the determination of preliminary reference values is also in preparation. The procedure described here is deduced from the previously described 30°C IFCC reference method (1). Differences are tabulated and commented on in Appendix 3.


Clinical Chemistry and Laboratory Medicine | 2002

IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase.

Gerhard Schumann; Roberto Bonora; Ferruccio Ceriotti; Georges Férard; Ferrero Ca; Franck Pf; Gella Fj; Wieland Hoelzel; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Kristiansen N; Lessinger Jm; Thomas P. J. Linsinger; Misaki H; Mauro Panteghini; Jean Pauwels; Schiele F; Heinz Schimmel; Gerhard Weidemann; Lothar Siekmann

Abstract This paper is the fourth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37°C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30°C IFCC reference method (1). Differences are tabulated and commented on in Appendix 2.


Clinical Chemistry and Laboratory Medicine | 2002

IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C

Gerhard Schumann; Roberto Bonora; Ferruccio Ceriotti; Clerc-Renaud P; Carlo A. Ferrero; Georges Férard; Franck Pf; F. Javier Gella; Wieland Hoelzel; Poul Jørgen Jørgensen; Kanno T; Art Kessner; Rainer Klauke; Kristiansen N; Jean Marc Lessinger; Thomas P. J. Linsinger; Misaki H; Mauro Panteghini; Jean Pauwels; Heinz Schimmel; Vialle A; Gerhard Weidemann; Lothar Siekmann

Abstract This paper is the second in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37°C. A document describing the determination of preliminary reference values is also in preparation. The procedure described here is deduced from the previously described 30°C IFCC reference method (1). Differences are tabulated and commented on in Appendix 3.


Clinical Chemistry and Laboratory Medicine | 2006

IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C.

Gerhard Schumann; Ryoji Aoki; Ferrero Ca; Glenn Ehlers; Georges Férard; Gella Fj; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Hans Joachim Kytzia; Lessinger Jm; W.G. Miller; Rolf Nagel; Jean Pauwels; Heinz Schimmel; Lothar Siekmann; Gerhard Weidemann; Kiyoshi Yoshida; Ferruccio Ceriotti

Abstract This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37°C. The procedure described here is deduced from the previously described 30°C IFCC reference method. Differences are tabulated and commented on. Clin Chem Lab Med 2006;44:1146–55.This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 degrees C. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on.


Clinical Chemistry and Laboratory Medicine | 2002

IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase accord.

Lothar Siekmann; Roberto Bonora; Burtis Ca; Ferruccio Ceriotti; Clerc-Renaud P; Georges Férard; Ferrero Ca; Forest Jc; Franck Pf; Gella Fj; Wieland Hoelzel; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Kristiansen N; Lessinger Jm; Thomas P. J. Linsinger; Misaki H; Mueller Mm; Mauro Panteghini; Jean Pauwels; Schiele F; Heinz Schimmel; Vialle A; Gerhard Weidemann; Gerhard Schumann

Abstract This paper is the seventh in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferase. A document describing the determination of preliminary reference values is also in preparation. The certification of the catalytic activity concentrations as determined by the recently elaborated IFCC primary reference methods at 37°C of four enzyme preparations, namely IRMM/IFCC 452 γ-glutamyltransferase), IRMM/IFCC 453 (lactate dehydrogenase 1), IRMM/IFCC 454 (alanine aminotransferase) and IRMM/IFCC 455 (creatine kinase) is described. Homogeneity data were derived from previous results. Stability was assessed using recently obtained data as well as data from previous stability studies. The collaborative study for value assignment was performed under a strict quality control scheme to ensure traceability to the primary reference method. Uncertainty of the materials was assessed in compliance with the Guide to the Expression of Uncertainty in Measurement. The certified values obtained at 37°C are 1.90 μkat/l ± 0.04 μkat/l (114.1 U/l ± 2.4 U/l), for γ-glutamyltransferase, 8.37 μkat/l ± 0.12 μkat/l (502 U/l ± 7 U/l), for lactate dehydrogenase 1, 3.09 μkat/l ± 0.07 μkat/l (186 U/l ± 4 U/l), for alanine aminotransferase and 1.68 μkat/l ± 0.07 μkat/l (101 U/l ± 4 U/l), for creatine kinase. The materials are intended for internal quality control as well as for the evaluation of test systems as required by recent European Union legislation. Furthermore, the materials can be used to transfer accuracy from a reference method to a routine procedure provided the procedures exhibit the same analytical specificity and the certified materials are commutable.


Clinical Chemistry and Laboratory Medicine | 2002

IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase.

Gerhard Schumann; Roberto Bonora; Ferruccio Ceriotti; Clerc-Renaud P; Ferrero Ca; Georges Férard; Franck Pf; Gella Fj; Wieland Hoelzel; Jørgensen Pj; Kanno T; Kessner A; Rainer Klauke; Kristiansen N; Lessinger Jm; Thomas P. J. Linsinger; Misaki H; Mauro Panteghini; Jean Pauwels; Heinz Schimmel; Vialle A; Gerhard Weidemann; Lothar Siekmann

Abstract This paper is the third in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ -glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glu tamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37°C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30°C IFCC reference method (1). Differences are tabulated and commented on in Appendix 1. Clin Chem Lab Med 2002; 40(6):643648


Clinical Chemistry and Laboratory Medicine | 2002

IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37( C. Part 1: The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes

Lothar Siekmann; Roberto Bonora; Burtis Ca; Ferruccio Ceriotti; Clerc-Renaud P; Georges Férard; Ferrero Ca; Forest Jc; Franck Pf; Gella Fj; Wieland Hoelzel; Jørgensen Pj; Kanno T; Art Kessner; Rainer Klauke; Kristiansen N; Lessinger Jm; Thomas P. J. Linsinger; Misaki H; Mueller Mm; Mauro Panteghini; Jean Pauwels; Schiele F; Heinz Schimmel; Vialle A; Gerhard Weidemann; Gerhard Schumann

This paper is the first in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and with the certification of reference preparations. Other parts deal with: Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic fication of Four Reference Materials for the Determination of Enzymatic Activity of y-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary reference values is also in preparation.


Clinical Chemistry and Laboratory Medicine | 2006

Influence of human haptoglobin polymorphism on oxidative stress induced by free hemoglobin on red blood cells.

Papa Madièye Guéye; Nicole Glasser; Georges Férard; Jean-Marc Lessinger

Abstract Background: An in vitro study was conducted to determine whether haptoglobin phenotypes differed in their protective effect against oxidative stress induced by extracellular hemoglobin on red blood cells. Methods: Conjugated dienes and thiobarbituric acid-reactive substances (TBARS) were determined in human red blood cell membranes in the presence of hemoglobin and various concentrations of each type of purified haptoglobin. In addition, the release of K+ and lactate dehydrogenase from red blood cells was measured. Results: A protective effect of haptoglobin was observed in terms of results obtained for the four parameters examined, with significant differences (p<0.001) between the three haptoglobin types; type 1-1 was the most active and type 2-2 the least active. A proportion of oxidative damage was not sensitive to haptoglobin, but to desferrioxamine (an iron chelator), indicating the participation of two actors, hemoglobin and free iron, in the oxidative stress of membrane lipids. Conclusions: The antioxidant role of haptoglobin and the phenotype dependence were confirmed for preventing possible oxidative damage induced by free hemoglobin and iron release during its catabolism.


Clinical Chemistry and Laboratory Medicine | 2002

C-reactive protein to transthyretin ratio for the early diagnosis and follow-up of postoperative infection.

Georges Férard; Jeannot Gaudias; A. Bourguignat; Yves Ingenbleek

Abstract The clinical usefulness of C-reactive protein (CRP) and of transthyretin (TTR) for the early diagnosis and follow-up of infection after an open fracture was prospectively investigated (cohort A). It was complemented by a retrospective study of trauma patients admitted to an intensive care unit (cohort B). Serial determinations of serum CRP and TTR concentrations were first performed in uninfected patients from cohort A to define a reference profile during the early postoperative period. It showed a concomitant increase in CRP and decrease in TTR concentrations, followed by progressive return to initial values in patients free from bacterial infection. Variations of the CRP/TTR ratio were analyzed. Recovery phase was defined by an exponential evolution of the two plasma proteins and of their ratio value. The CRP and TTR concentrations were independent of sex and severity of the trauma. In the case of postoperative infection, patients of cohort A revealed amplified CRP and TTR responses usually preceding the occurrence of clinical signs. During successful antibiotic therapy, their recovery response became superimposable to that of the reference group. The same profiles were recorded in cohort B patients admitted with lower limb fractures or various types of trauma. This suggests that observations made on cohort A can be extrapolated to other trauma patients. We recommend that serial measurements of CRP and TTR and of their ratio should be performed every 2 days to appropriately follow-up these patients.


Clinica Chimica Acta | 1996

Diagnostic value of C-reactive protein and transthyretin in bone infections of the lower limb

A. Bourguignat; Georges Férard; Jean-Yves Jenny; Jeannot Gaudias; Ivan Kempf

In a prospective study, white and red blood cell counts, hematocrit, erythrocyte sedimentation rate (ESR), albumin, alpha-1 acid glycoprotein, C-reactive protein (CRP), and transthyretin (TTR) values were determined by serial measurements during 23 days in 80 patients with an open fracture of the lower limb. Postoperative reference profiles were defined in 74 patients without septic complications. In the six remaining patients, serum CRP and TTR concentrations were found efficient for the early diagnosis of postoperative infections: a CRP/TTR mass concentration ratio higher than 0.6 from the 8th day after surgery was sensitive (100%) and specific (93%). Variations of CRP and TTR concentrations often preceded the clinical diagnosis in patients with early infection. ESR was found unreliable with regard to postoperative infection because of its high dependence with respect to red blood cell count.

Collaboration


Dive into the Georges Férard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferruccio Ceriotti

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge