Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georges Tarlet is active.

Publication


Featured researches published by Georges Tarlet.


American Journal of Pathology | 2008

Essential Role of Plasminogen Activator Inhibitor Type-1 in Radiation Enteropathy

Fabien Milliat; Jean-Christophe Sabourin; Georges Tarlet; Valerie Holler; Eric Deutsch; Valérie Buard; Radia Tamarat; Azeddine Atfi; Marc Benderitter; Agnès François

Intestinal radiation injury is a dose-limiting factor in radiation therapy for abdominal and pelvic cancers. Because transforming growth factor-beta1 is a key mediator involved in radiation-induced damage, we hypothesized that its target gene, plasminogen activator inhibitor type 1 (PAI-1), is an essential mediator of intestinal radiation toxicity. In a model of radiation enteropathy, survival was monitored and intestinal radiation injury was assessed in both wild-type (Wt) and PAI-1 knockout mice. Immunohistochemical labeling of PAI-1 was also assessed in patients treated with preoperative radiotherapy for rectal adenocarcinoma. Finally, the molecular mechanisms involved in radiation-induced PAI-1 expression were investigated. We found that PAI-1 -/- mice exhibited increased survival and better intestinal function compared with Wt mice. Intestinal radiation injury was attenuated in irradiated PAI-1 -/- mice compared with irradiated Wt mice, and irradiation increased blood cell-endothelial cell interactions in Wt but not PAI-1 -/- mice. In vivo, radiation-induced intestinal damage in mice, as well as in patients treated with radiotherapy, was associated with the up-regulation of PAI-1 in the endothelium. In vitro, irradiation increased PAI-1 expression in endothelial cells by a p53/Smad3-dependent mechanism. Together, these data demonstrate that PAI-1 plays a critical role in radiation-induced intestinal damage, suggesting that PAI-1 is an attractive target for preventing or reducing the side effects of radiation therapy.


PLOS ONE | 2012

PAI-1-Dependent Endothelial Cell Death Determines Severity of Radiation-Induced Intestinal Injury

Rym Abderrahmani; Agnès François; Valérie Buard; Georges Tarlet; Karl Blirando; Mohammad Hneino; Aurélie Vaurijoux; Marc Benderitter; Jean-Christophe Sabourin; Fabien Milliat

Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.


Scientific Reports | 2015

In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury.

Emilie Rannou; Agnès François; Aurore Toullec; Olivier Guipaud; Valérie Buard; Georges Tarlet; Elodie Mintet; Cyprien Jaillet; Maria Luisa Iruela-Arispe; Marc Benderitter; Jean-Christophe Sabourin; Fabien Milliat

The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis.


Molecular & Cellular Proteomics | 2013

Alteration of the Serum N-glycome of Mice Locally Exposed to High Doses of Ionizing Radiation

Thibault Chaze; Marie-Christine Slomianny; Fabien Milliat; Georges Tarlet; Tony Lefebvre-Darroman; Patrick Gourmelon; Eric Bey; Marc Benderitter; Jean-Claude Michalski; Olivier Guipaud

Exposure of the skin to ionizing radiation leads to characteristic reactions that will often turn into a pathophysiological process called the cutaneous radiation syndrome. The study of this disorder is crucial to finding diagnostic and prognostic bioindicators of local radiation exposure or radiation effects. It is known that irradiation alters the serum proteome content and potentially post-translationally modifies serum proteins. In this study, we investigated whether localized irradiation of the skin alters the serum glycome. Two-dimensional differential in-gel electrophoresis of serum proteins from a man and from mice exposed to ionizing radiation showed that potential post-translational modification changes occurred following irradiation. Using a large-scale quantitative mass-spectrometry-based glycomic approach, we performed a global analysis of glycan structures of serum proteins from non-irradiated and locally irradiated mice exposed to high doses of γ-rays (20, 40, and 80 Gy). Non-supervised descriptive statistical analyses (principal component analysis) using quantitative glycan structure data allowed us to discriminate between uninjured/slightly injured animals and animals that developed severe lesions. Decisional statistics showed that several glycan families were down-regulated whereas others increased, and that particular structures were statistically significantly changed in the serum of locally irradiated mice. The observed increases in multiantennary N-glycans and in outer branch fucosylation and sialylation were associated with the up-regulation of genes involved in glycosylation in the liver, which is the main producer of serum proteins, and with an increase in the key proinflammatory serum cytokines IL-1β, IL-6, and TNFα, which can regulate the expression of glycosylation genes. Our results suggest for the first time a role of serum protein glycosylation in response to irradiation. These protein-associated glycan structure changes might signal radiation exposure or effects.


American Journal of Pathology | 2015

Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis

Elodie Mintet; Emilie Rannou; Valérie Buard; Gail West; Olivier Guipaud; Georges Tarlet; Jean Christophe Sabourin; Marc Benderitter; Claudio Fiocchi; Fabien Milliat; Agnès François

The endothelial-to-mesenchymal transition (EndoMT) is a crucial cellular process during heart development necessary to the formation of cardiac valves. This embryonic process reappears in several pathological situations, such as vascular injury or organ fibrosis of various etiologies, as a mediator of extracellular matrix-producing cells. Because radiation induces both vascular damage and fibrosis, we investigated whether radiation exposure induces EndoMT in primary human intestinal microvascular endothelial cells (HIMECs) and whether EndoMT contributes to radiation-induced rectal damage in humans and in a preclinical model of radiation proctitis in mice. Irradiated HIMECs show phenotypic hallmarks of radiation-induced endothelial cell activation in vitro. Moreover, HIMECs undergo changes in molecular expression pattern compatible with EndoMT, with up-regulation of mesenchymal markers and down-regulation of endothelial markers via transforming growth factor/Smad pathway activation. In vivo, EndoMT readily occurs in the human rectum after radiation therapy for rectal adenocarcinoma. Finally, EndoMT was observed in rectal mucosal and submucosal microvessels in a preclinical model of radiation proctitis in Tie2-green fluorescent protein reporter-expressing mice all along radiation proctitis development, also associated with transforming growth factor/Smad pathway activation. In conclusion, radiation-induced cell activation and tissue inflammation constitute a setting that fosters the phenotypic conversion of endothelial cells into mesenchymal cells. Therefore, EndoMT is identified as a potential participant in radiation-induced gut damage and may represent an interesting therapeutic target in cases of radiation-induced pelvic disease.


Journal of Biological Chemistry | 2012

The TG-interacting Factor TGIF1 Regulates Stress-induced Proinflammatory Phenotype of Endothelial Cells

Mohammad Hneino; Karl Blirando; Valérie Buard; Georges Tarlet; Marc Benderitter; Pamela A. Hoodless; Agnès François; Fabien Milliat

Background: TG-interacting factor 1 plays a role in radiation-induced injury. Results: In vitro, TGIF1 overexpression increases stress-induced cytokine expression whereas TGIF1 knockdown limits it. Conclusion: TGIF1 regulates radiation and TNF-α-induced inflammation in endothelial cells. Significance: TGIF1 could be a molecular target to limit radiation or TNF-α-induced proinflammatory phenotype in endothelium. The endothelium contributes to the control of the tissue inflammatory response following stress and in particular after exposure to ionizing radiation. We previously showed that the TG-interacting factor 1 (TGIF1) plays a role in radiation-induced normal tissue injury. In this study we hypothesized that this protein could play a role in inflammation. The role of TGIF1 in the stress-induced proinflammatory phenotype was investigated in human endothelial cells. In HUVECs ionizing radiation induces TGIF1 expression as well as a proinflammatory phenotype associated with up-regulation of IL-6, IL-8, CXCL1, MIP-2, and MCP-1. TGIF1 overexpression enhances the radiation-induced proinflammatory phenotype whereas TGIF1 silencing limits both the TNF-α- and radiation-induced overexpression of proinflammatory cytokines. Interestingly, in vivo, in radiation-induced intestinal inflammation in mice, TGIF1 genetic deficiency is associated with a reduced radiation-induced overexpression of proinflammatory molecules. In HUVECs, TNF-α- and radiation-induced NF-κB pathway activation is not influenced by TGIF1 expression, whereas TGIF1 knockdown inhibits both TNF-α- and radiation-induced p38 MAPK pathway activation. This study demonstrates that TGIF1 plays a role in TNF-α- and radiation-induced inflammation and suggests that it could be a target in limiting this event in the vascular compartment.


Scientific Reports | 2017

Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice

Elodie Mintet; Jérémy Lavigne; V. Paget; Georges Tarlet; Valérie Buard; Olivier Guipaud; Jean-Christophe Sabourin; Maria-Luisa Iruela-Arispe; Fabien Milliat; Agnès François

The current study evaluated the role of Hey2 transcription factor in radiation-induced endothelial-to-mesenchymal transition (EndoMT) and its impact on radiation-induced tissue damage in mice. Phenotypic modifications of irradiated, Hey2 siRNA- and Hey2 vector plasmid-transfected human umbilical vein endothelial cells (HUVECs) resembling EndoMT were monitored by qPCR, immunocytochemistry and western blots. Subsequently, in mice, a Cre-LoxP strategy for inactivation of Hey2 specifically in the endothelium was used to study the biological consequences. Total body irradiation and radiation proctitis were monitored to investigate the impact of conditional Hey2 deletion on intestinal stem cells and microvascular compartment radiosensitivity, EndoMT and rectal damage severity. We found that EndoMT occurs in irradiated HUVECs with concomitant Hey2 mRNA and protein increase. While Hey2 silencing has no effect on radiation-induced EndoMT in vitro, Hey2 overexpression is sufficient to induce phenotypic conversion of endothelial cells. In mice, the conditional deletion of Hey2 reduces EndoMT frequency and the severity of rectal tissue damage. Our data indicate that the reduction in mucosal damage occurs through decline in stem/clonogenic epithelial cell loss mediated by microvascular protection. EndoMT is involved in radiation proctitis and this study demonstrates that a strategy based on the reduction of EndoMT mitigates intestinal tissue damage.


Cellular and molecular gastroenterology and hepatology | 2018

HIF-1α Deletion in the Endothelium, but Not in the Epithelium, Protects From Radiation-Induced Enteritis

Aurore Toullec; Valérie Buard; Emilie Rannou; Georges Tarlet; Olivier Guipaud; Sylvie Robine; M. Luisa Iruela-Arispe; Agnès François; Fabien Milliat

Background & Aims Radiation therapy in the pelvic area is associated with side effects that impact the quality of life of cancer survivors. Interestingly, the gastrointestinal tract is able to adapt to significant changes in oxygen availability, suggesting that mechanisms related to hypoxia sensing help preserve tissue integrity in this organ. However, hypoxia-inducible factor (HIF)-dependent responses to radiation-induced gut toxicity are unknown. Radiation-induced intestinal toxicity is a complex process involving multiple cellular compartments. Here, we investigated whether epithelial or endothelial tissue-specific HIF-1α deletion could affect acute intestinal response to radiation. Methods Using constitutive and inducible epithelial or endothelial tissue-specific HIF-1α deletion, we evaluated the consequences of epithelial or endothelial HIF-1α deletion on radiation-induced enteritis after localized irradiation. Survival, radiation-induced tissue injury, molecular inflammatory profile, tissue hypoxia, and vascular injury were monitored. Results Surprisingly, epithelium-specific HIF-1α deletion does not alter radiation-induced intestinal injury. However, irradiated VECad-Cre+/-HIF-1αFL/FL mice present with lower radiation-induced damage, showed a preserved vasculature, reduced hypoxia, and reduced proinflammatory response compared with irradiated HIF-1αFL/FL mice. Conclusions We demonstrate in vivo that HIF-1α impacts radiation-induced enteritis and that this role differs according to the targeted cell type. Our work provides a new role for HIF-1α and endothelium-dependent mechanisms driving inflammatory processes in gut mucosae. Results presented show that effects on normal tissues have to be taken into account in approaches aiming to modulate hypoxia or hypoxia-related molecular mechanisms.


Scientific Reports | 2017

Radiation-induced changes in the glycome of endothelial cells with functional consequences

Cyprien Jaillet; Willy Morelle; Marie-Christine Slomianny; V. Paget; Georges Tarlet; Valérie Buard; Sonia Selbonne; Fanny Caffin; Emilie Rannou; Pierre Martinez; Agnès François; François Foulquier; Fabrice Allain; Fabien Milliat; Olivier Guipaud

As it is altered by ionizing radiation, the vascular network is considered as a prime target in limiting normal tissue damage and improving tumor control in radiation therapy. Irradiation activates endothelial cells which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Since protein glycosylation is an important determinant of cell adhesion, we hypothesized that radiation could alter the glycosylation pattern of endothelial cells and thereby impact adhesion of circulating cells. Herein, we show that ionizing radiation increases high mannose-type N-glycans and decreases glycosaminoglycans. These changes stimulate interactions measured under flow conditions between irradiated endothelial cells and monocytes. Targeted transcriptomic approaches in vitro in endothelial cells and in vivo in a radiation enteropathy mouse model confirm that genes involved in N- and O-glycosylation are modulated by radiation, and in silico analyses give insight into the mechanism by which radiation modifies glycosylation. The endothelium glycome may therefore be considered as a key therapeutic target for modulating the chronic inflammatory response observed in healthy tissues or for participating in tumor control by radiation therapy.


American Journal of Pathology | 2006

Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: implication in radiation-induced vascular damages.

Fabien Milliat; Agnès François; Muriel Isoir; Eric Deutsch; Radia Tamarat; Georges Tarlet; Azeddine Atfi; Pierre Validire; Jean Bourhis; Jean-Christophe Sabourin; Marc Benderitter

Collaboration


Dive into the Georges Tarlet's collaboration.

Top Co-Authors

Avatar

Fabien Milliat

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Valérie Buard

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Agnès François

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Marc Benderitter

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Olivier Guipaud

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Emilie Rannou

University of California

View shared research outputs
Top Co-Authors

Avatar

Elodie Mintet

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Cyprien Jaillet

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Jérémy Lavigne

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Karl Blirando

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Researchain Logo
Decentralizing Knowledge