Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georgi S. Medvedev is active.

Publication


Featured researches published by Georgi S. Medvedev.


Siam Journal on Applied Mathematics | 2001

SYNCHRONIZATION AND TRANSIENT DYNAMICS IN THE CHAINS OF ELECTRICALLY COUPLED FITZHUGH-NAGUMO OSCILLATORS ∗

Georgi S. Medvedev; Nancy Kopell

Chains of N FitzHugh-Nagumo oscillators with a gradient in natural frequencies and strong diffusive coupling are analyzed in this paper. We study the systems dynamics in the limit of infinitely large coupling and then treat the case when the coupling is large but finite as a perturbation of the former case. In the large coupling limit, the 2N -dimensional phase space has an unexpected structure: there is an (N − 1)-dimensional cylinder foliated by periodic orbits with an integral that is constant on each orbit. When the coupling is large but finite, this cylinder becomes an analog of an inertial manifold. The phase trajectories approach the cylinder on the fast time scale and then slowly drift along it toward a unique limit cycle. We analyze these dynamics using geometric theory for singularly perturbed dynamical systems, asymptotic expansions of solutions (rigorously justified), and Lyapunovs method.


Siam Journal on Applied Mathematics | 2009

Bursting Oscillations Induced by Small Noise

Pawel Hitczenko; Georgi S. Medvedev

We consider a model of a square-wave bursting neuron residing in the regime of tonic spiking. Upon introduction of small stochastic forcing, the model generates irregular bursting. The statistical properties of the emergent bursting patterns are studied in the present work. In particular, we identify two principal statistical regimes associated with the noise-induced bursting. In the first case, type I, bursting oscillations are created mainly due to the fluctuations in the fast subsystem. In the alternative scenario, type II bursting, the random perturbations in the slow dynamics play a dominant role. We propose two classes of randomly perturbed slow-fast systems that realize type I and type II scenarios. For these models, we derive the Poincare maps. The analysis of the linearized Poincare maps of the randomly perturbed systems explains the distributions of the number of spikes within one burst and reveals their dependence on the small and control parameters present in the models. The mathematical analy...


Journal of Computational Neuroscience | 2003

Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron.

Georgi S. Medvedev; Charles J. Wilson; J. C. Callaway; Nancy Kopell

Transient increases in spontaneous firing rate of mesencephalic dopaminergic neurons have been suggested to act as a reward prediction error signal. A mechanism previously proposed involves subthreshold calcium-dependent oscillations in all parts of the neuron. In that mechanism, the natural frequency of oscillation varies with diameter of cell processes, so there is a wide variation of natural frequencies on the cell, but strong voltage coupling enforces a single frequency of oscillation under resting conditions. In previous work, mathematical analysis of a simpler system of oscillators showed that the chain of oscillators could produce transient dynamics in which the frequency of the coupled system increased temporarily, as seen in a biophysical model of the dopaminergic neuron. The transient dynamics was shown to be consequence of a slow drift along an invariant subset of phase space, with rate of drift given by a Lyapunov function. In this paper, we show that the same mathematical structure exists for the full biophysical model, giving physiological meaning to the slow drift and the Lyapunov function, which is shown to describe differences in intracellular calcium concentration in different parts of the cell. The duration of transients was long, being comparable to the time constant of calcium disposition. These results indicate that brief changes in input to the dopaminergic neuron can produce long lasting firing rate transients whose form is determined by intrinsic cell properties.


Siam Journal on Control and Optimization | 2012

Stochastic Stability of Continuous Time Consensus Protocols

Georgi S. Medvedev

A unified approach to studying convergence and stochastic stability of continuous time consensus protocols (CPs) is presented in this work. Our method applies to networks with directed information flow; both cooperative and noncooperative interactions; networks under weak stochastic forcing; and those whose topology and strength of connections may vary in time. The graph theoretic interpretation of the analytical results is emphasized. We show how the spectral properties, such as algebraic connectivity and total effective resistance, as well as the geometric properties, such the dimension and the structure of the cycle subspace of the underlying graph, shape stability of the corresponding CPs. In addition, we explore certain implications of the spectral graph theory to CP design. In particular, we point out that expanders, sparse highly connected graphs, generate CPs whose performance remains uniformly high when the size of the network grows unboundedly. Similarly, we highlight the benefits of using random versus regular network topologies for CP design. We illustrate these observations with numerical examples and refer to the relevant graph-theoretic results. Keywords: consensus protocol, dynamical network, synchronization, robustness to noise, algebraic connectivity, effective resistance, expander, random graph


Physica D: Nonlinear Phenomena | 2014

Small-world networks of Kuramoto oscillators

Georgi S. Medvedev

Abstract The Kuramoto model of coupled phase oscillators on small-world (SW) graphs is analyzed in this work. When the number of oscillators in the network goes to infinity, the model acquires a family of steady state solutions of degree q , called q -twisted states. We show that this class of solutions plays an important role in the formation of spatial patterns in the Kuramoto model on SW graphs. In particular, the analysis of q -twisted states elucidates the role of long-range random connections in shaping the attractors in this model. We develop two complementary approaches for studying q -twisted states in the coupled oscillator model on SW graphs: linear stability analysis and numerical continuation. The former approach shows that long-range random connections in the SW graphs promote synchronization and yields the estimate of the synchronization rate as a function of the SW randomization parameter. The continuation shows that the increase of the long-range connections results in patterns consisting of one or several plateaus separated by sharp interfaces. These results elucidate the pattern formation mechanisms in nonlocally coupled dynamical systems on random graphs.


international symposium on physical design | 2007

Multimodal oscillations in systems with strong contraction

Georgi S. Medvedev; Yun Yoo

One- and two-parameter families of flows in R 3 near an Andronov‐Hopf bifurcation (AHB) are investigated in this work. We identify conditions on the global vector field, which yield a rich family of multimodal orbits passing close to a weakly unstable saddle-focus and perform a detailed asymptotic analysis of the trajectories in the vicinity of the saddle-focus. Our analysis covers both cases of sub- and supercritical AHB. For the supercritical case, we find that the periodic orbits born from the AHB are bimodal when viewed in the frame of coordinates generated by the linearization about the bifurcating equilibrium. If the AHB is subcritical, it is accompanied by the appearance of multimodal orbits, which consist of long series of nearly harmonic oscillations separated by large amplitude spikes. We analyze the dependence of the interspike intervals (which can be extremely long) on the control parameters. In particular, we show that the interspike intervals grow logarithmically as the boundary between regions of sub- and supercritical AHB is approached in the parameter space. We also identify a window of complex and possibly chaotic oscillations near the boundary between the regions of sub- and supercritical AHB and explain the mechanism generating these oscillations. This work is motivated by the numerical results for a finite-dimensional approximation of a free boundary problem modeling solid fuel combustion. c 2007 Elsevier B.V. All rights reserved.


Archive for Rational Mechanics and Analysis | 2014

The Nonlinear Heat Equation on W-Random Graphs

Georgi S. Medvedev

For systems of coupled differential equations on a sequence of W-random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.


Journal of Nonlinear Science | 2011

Synchronization of Coupled Limit Cycles

Georgi S. Medvedev

A unified approach to the analysis of synchronization in coupled systems of autonomous differential equations is presented in this work. Through a careful analysis of the variational equation of the coupled system we establish a sufficient condition for synchronization in terms of the geometric properties of the local limit cycles and the coupling operator. This result applies to a large class of differential equation models in physics and biology. The stability analysis is complemented by a discussion of numerical simulations of a compartmental model of a neuron.


Siam Journal on Mathematical Analysis | 2014

THE NONLINEAR HEAT EQUATION ON DENSE GRAPHS AND GRAPH LIMITS

Georgi S. Medvedev

We use the combination of ideas and results from the theory of graph limits and nonlinear evolution equations to provide a rigorous mathematical justification for taking continuum limit for certain nonlocally coupled networks and to extend this method to cover many complex networks, for which it has not been applied before. Specifically, for dynamical networks on convergent sequences of simple and weighted graphs, we prove convergence of solutions of the initial-value problems for discrete models to those of the limiting continuous equations. In addition, for sequences of simple graphs converging to {0, 1}-valued graphons, it is shown that the convergence rate depends on the fractal dimension of the boundary of the support of the graph limit. These results are then used to study the regions of continuity of chimera states and the attractors of the nonlocal Kuramoto equation on certain multipartite graphs. Furthermore, the analytical tools developed in this work are used in the rigorous justification of the continuum limit for networks on random graphs that we undertake in a companion paper (Medvedev, 2013). As a by-product of the analysis of the continuum limit on deterministic and random graphs, we identify the link between this problem and the convergence analysis of several classical numerical schemes: the collocation, Galerkin, and Monte-Carlo methods. Therefore, our results can be used to characterize convergence of these approximate methods of solving initial-value problems for nonlinear evolution equations with nonlocal interactions.


Journal of Nonlinear Science | 2012

The Geometry of Spontaneous Spiking in Neuronal Networks

Georgi S. Medvedev; Svitlana Zhuravytska

The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin–Wentzell large-deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior.

Collaboration


Dive into the Georgi S. Medvedev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Wilson

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

J. C. Callaway

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge