Georgia Kapatai
Public Health England
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georgia Kapatai.
Lancet Infectious Diseases | 2013
Timothy M. Walker; Camilla L. C. Ip; Ruth H Harrell; Jason T. Evans; Georgia Kapatai; Martin Dedicoat; David W. Eyre; Daniel J. Wilson; Peter M. Hawkey; Derrick W. Crook; Julian Parkhill; David Harris; A. Sarah Walker; Rory Bowden; Philip Monk; E. Grace Smith; Tim Peto
Summary Background Tuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks. Methods In a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data. Findings We sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters. Interpretation Whole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between cases. The technique could identify super-spreaders and predict the existence of undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts. Funding Medical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection Agency.
Lancet Infectious Diseases | 2015
Timothy M. Walker; Thomas A. Kohl; Shaheed V. Omar; Jessica Hedge; Carlos del Ojo Elias; Phelim Bradley; Zamin Iqbal; Silke Feuerriegel; Katherine E. Niehaus; Daniel J. Wilson; David A. Clifton; Georgia Kapatai; Camilla L. C. Ip; Rory Bowden; Francis Drobniewski; Caroline Allix-Béguec; Cyril Gaudin; Julian Parkhill; Roland Diel; Philip Supply; Derrick W. Crook; E. Grace Smith; A. Sarah Walker; Nazir Ismail; Stefan Niemann; Tim Peto
Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early. Funding Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.
PeerJ | 2016
Georgia Kapatai; Carmen Sheppard; Ali Al-Shahib; David Litt; Anthony Underwood; Timothy G. Harrison; Norman K. Fry
Streptococcus pneumoniae typically express one of 92 serologically distinct capsule polysaccharide (cps) types (serotypes). Some of these serotypes are closely related to each other; using the commercially available typing antisera, these are assigned to common serogroups containing types that show cross-reactivity. In this serotyping scheme, factor antisera are used to allocate serotypes within a serogroup, based on patterns of reactions. This serotyping method is technically demanding, requires considerable experience and the reading of the results can be subjective. This study describes the analysis of the S. pneumoniae capsular operon genetic sequence to determine serotype distinguishing features and the development, evaluation and verification of an automated whole genome sequence (WGS)-based serotyping bioinformatics tool, PneumoCaT (Pneumococcal Capsule Typing). Initially, WGS data from 871 S. pneumoniae isolates were mapped to reference cps locus sequences for the 92 serotypes. Thirty-two of 92 serotypes could be unambiguously identified based on sequence similarities within the cps operon. The remaining 60 were allocated to one of 20 ‘genogroups’ that broadly correspond to the immunologically defined serogroups. By comparing the cps reference sequences for each genogroup, unique molecular differences were determined for serotypes within 18 of the 20 genogroups and verified using the set of 871 isolates. This information was used to design a decision-tree style algorithm within the PneumoCaT bioinformatics tool to predict to serotype level for 89/94 (92 + 2 molecular types/subtypes) from WGS data and to serogroup level for serogroups 24 and 32, which currently comprise 2.1% of UK referred, invasive isolates submitted to the National Reference Laboratory (NRL), Public Health England (June 2014–July 2015). PneumoCaT was evaluated with an internal validation set of 2065 UK isolates covering 72/92 serotypes, including 19 non-typeable isolates and an external validation set of 2964 isolates from Thailand (n = 2,531), USA (n = 181) and Iceland (n = 252). PneumoCaT was able to predict serotype in 99.1% of the typeable UK isolates and in 99.0% of the non-UK isolates. Concordance was evaluated in UK isolates where further investigation was possible; in 91.5% of the cases the predicted capsular type was concordant with the serologically derived serotype. Following retesting, concordance increased to 99.3% and in most resolved cases (97.8%; 135/138) discordance was shown to be caused by errors in original serotyping. Replicate testing demonstrated that PneumoCaT gave 100% reproducibility of the predicted serotype result. In summary, we have developed a WGS-based serotyping method that can predict capsular type to serotype level for 89/94 serotypes and to serogroup level for the remaining four. This approach could be integrated into routine typing workflows in reference laboratories, reducing the need for phenotypic immunological testing.
Clinical Infectious Diseases | 2014
Kathryn Harris; Anthony Underwood; D. Kenna; Anthony Brooks; Ema Kavaliunaite; Georgia Kapatai; Rediat Tewolde; Paul Aurora; Garth Dixon
We have not been able to demonstrate cross-transmission of Mycobacterium abscessus within our hospital, except between siblings who had intense contact in the home environment. The role of the environment in the acquisition of M. abscessus infection requires further investigation.
BMC Genomics | 2017
Victoria J. Chalker; Aleksey Jironkin; Juliana Coelho; Ali Al-Shahib; Steve Platt; Georgia Kapatai; Roger Daniel; Chenchal Dhami; Marisa Laranjeira; Timothy Chambers; Rebecca Guy; Theresa Lamagni; Timothy G. Harrison; Meera Chand; Alan P. Johnson; Anthony Underwood
BackgroundDuring a substantial elevation in scarlet fever (SF) notifications in 2014 a national genomic study was undertaken of Streptococcus pyogenes (Group A Streptococci, GAS) isolates from patients with SF with comparison to isolates from patients with invasive disease (iGAS) to test the hypotheses that the increase in SF was due to either the introduction of one or more new/emerging strains in the population in England or the transmission of a known genetic element through the population of GAS by horizontal gene transfer (HGT) resulting in infections with an increased likelihood of causing SF. Isolates were collected to provide geographical representation, for approximately 5% SF isolates from each region from 1st April 2014 to 18th June 2014. Contemporaneous iGAS isolates for which genomic data were available were included for comparison. Data were analysed in order to determine emm gene sequence type, phylogenetic lineage and genomic clade representation, the presence of known prophage elements and the presence of genes known to confer pathogenicity and resistance to antibiotics.Results555 isolates were analysed, 303 from patients with SF and 252 from patients with iGAS. Isolates from patients with SF were of multiple distinct emm sequence types and phylogenetic lineages. Prior to data normalisation, emm3 was the predominant type (accounting for 42.9% of SF isolates, 130/303 95%CI 37.5–48.5; 14.7% higher than the percentage of emm3 isolates found in the iGAS isolates). Post-normalisation emm types, 4 and 12, were found to be over-represented in patients with SF versus iGAS (p < 0.001). A single gene, ssa, was over-represented in isolates from patients with SF. No single phage was found to be over represented in SF vs iGAS. However, a “meta-ssa” phage defined by the presence of :315.2, SPsP6, MGAS10750.3 or HK360ssa, was found to be over represented. The HKU360.vir phage was not detected yet the HKU360.ssa phage was present in 43/63 emm12 isolates but not found to be over-represented in isolates from patients with SF.ConclusionsThere is no evidence that the increased number of SF cases was a strain-specific or known mobile element specific phenomenon, as the increase in SF cases was associated with multiple lineages of GAS.
PeerJ | 2017
Georgia Kapatai; Juliana Coelho; Steven Platt; Victoria J. Chalker
Streptococcus pyogenes group A Streptococcus (GAS) is the most common cause of bacterial throat infections, and can cause mild to severe skin and soft tissue infections, including impetigo, erysipelas, necrotizing fasciitis, as well as systemic and fatal infections including septicaemia and meningitis. Estimated annual incidence for invasive group A streptococcal infection (iGAS) in industrialised countries is approximately three per 100,000 per year. Typing is currently used in England and Wales to monitor bacterial strains of S. pyogenes causing invasive infections and those isolated from patients and healthcare/care workers in cluster and outbreak situations. Sequence analysis of the emm gene is the currently accepted gold standard methodology for GAS typing. A comprehensive database of emm types observed from superficial and invasive GAS strains from England and Wales informs outbreak control teams during investigations. Each year the Bacterial Reference Department, Public Health England (PHE) receives approximately 3,000 GAS isolates from England and Wales. In April 2014 the Bacterial Reference Department, PHE began genomic sequencing of referred S. pyogenes isolates and those pertaining to selected elderly/nursing care or maternity clusters from 2010 to inform future reference services and outbreak analysis (n = 3, 047). In line with the modernizing strategy of PHE, we developed a novel bioinformatics pipeline that can predict emmtypes using whole genome sequence (WGS) data. The efficiency of this method was measured by comparing the emmtype assigned by this method against the result from the current gold standard methodology; concordance to emmsubtype level was observed in 93.8% (2,852/3,040) of our cases, whereas in 2.4% (n = 72) of our cases concordance was observed to emm type level. The remaining 3.8% (n = 117) of our cases corresponded to novel types/subtypes, contamination, laboratory sample transcription errors or problems arising from high sequence similarity of the allele sequence or low mapping coverage. De novo assembly analysis was performed in the two latter groups (n = 72 + 117) and was able to diagnose the problem and where possible resolve the discordance (60/72 and 20/117, respectively). Overall, we have demonstrated that our WGS emm-typing pipeline is a reliable and robust system that can be implemented to determine emm type for the routine service.
PeerJ | 2017
Carmen Sheppard; Georgia Kapatai; Karen Broughton; Ulf Schaefer; Matthew J. Hannah; David Litt; Norman K. Fry
The major virulence factor of the pneumococcus, and target for conjugate vaccines, is the polysaccharide capsule, which is usually encoded by the highly variable cps locus. Serotype 37 is an unusual pneumococcal type in which the single β-glucosyltransferase gene responsible for serotype capsule production (tts) is located outside of the capsular operon region. Using a previously described automated whole genome sequence (WGS)-based serotyping bioinformatics tool, PneumoCaT, we identified and investigated seven clinical isolates (three from blood cultures) of non-pneumococcal streptococci containing a highly homologous tts and included them in a study panel of 20 isolates which included a 11 further clinical isolates of S. pneumoniae serotype 37, a reference strain of serotype 37 and the S. pseudopneumoniae type strain BAA 960T. The seven non-pneumococcal isolates generated novel alleles at all pneumococcal MLST loci and gave low percentage similarity (<45%) to S. pneumoniae or S. pseudopneumoniae species by comparison of short sequence patterns in genomic data (k-mer analysis). The S. pseudopneumoniae BAA-960T isolate generated two novel alleles in the MLST and gave a high similarity (>99%) to the reference sequence for BAA-960T. Twelve isolates gave high similarity (>77%) to the Streptococcus pneumoniae 5652-06 serotype 19A reference genome sequence and had previously reported MLST alleles. Each of the seven clinical non-pneumococcal strains and all of the 12 S. pneumoniae possessed a β-glycosyltransferase gene (tts) with >95% similarity to the pneumococcal tts reference DNA sequence with 20–22 non-synonymous SNPs. All but two strains in which the tts gene was detected gave positive reactions for serotype 37 in slide agglutination tests with serotype 37 typing sera. Phylogenetic analysis using both SNP and MLST data showed distinct clades corresponding to strains identified as pneumococcus or non-pneumococcus by kmer WGS analysis. Extended k-mer database analysis and ribosomal MLST placed the non-pneumococcal isolates within the S. mitis group. Biochemical and bile solubility assays showed differences between the unusual isolates and S. pneumoniae. All isolates had detectable pneumolysin (ply) genes, but only those that identified as pneumococcus contained the genes for autolysin (lytA) or the ABC transporter lipoprotein A (piaA) with >80% coverage and >95% similarity. Here we report the existence of a novel group of strains distinct from S. pneumoniae, but which can express a pneumococcal serotype 37 capsular polysaccharide which can be associated with clinical disease.
Journal of Clinical Microbiology | 2017
Elita Jauneikaite; Zareena Khan-Orakzai; Georgia Kapatai; Susannah Bloch; Julie Singleton; Sara Atkin; Victoria Shah; James Hatcher; Dunisha Samarasinghe; Carmen Sheppard; Norman K. Fry; Giovanni Satta; Shiranee Sriskandan
ABSTRACT Streptococcus pneumoniae infections arising in hospitalized patients are often assumed to be sporadic and linked to community acquisition. Here, whole-genome sequencing was used to demonstrate nosocomial acquisition of antimicrobial-resistant sequence type 156 (ST156) serotype 9V S. pneumoniae in 3 respiratory patients that resulted in two bacteremias and one lower respiratory tract infection. Two of the cases arose in patients who had recently been discharged from the hospital and were readmitted from the community. Nosocomial spread was suspected solely because of the highly unusual resistance pattern and case presentations within 24 h of one another. The outbreak highlights the potential for rapid transmission and the short incubation period in the respiratory ward setting.
BMC Genomics | 2017
Georgia Kapatai; Darshana Patel; Androulla Efstratiou; Victoria J. Chalker
BackgroundGroup B streptococcus (GBS) capsular polysaccharide is one of the major virulence factors underlying invasive GBS disease and a component of forthcoming vaccines. Serotype classification of GBS is based on the capsule polysaccharide of which ten variants are known to exist (Ia, Ib, II-IX). Current methods for GBS serotype assignment rely on latex agglutination or PCR while more recently a whole genome sequencing method was reported. In this study, three distinct algorithms for serotype assignment from genomic data were assessed using a panel of 790 clinical isolates.MethodsThe first approach utilised the entire capsular locus coupled with a mapping methodology. The second approach continues from the first and utilised a SNP-based methodology across the conserved cpsD-G region to differentiate serotypes Ia-VII and IX. Finally the third approach used the variable cpsG –K region coupled with a mapping methodology. All three approaches were assessed for typeability (percentage of isolates assigned a serotype) and concordance to the latex agglutination methodology.ResultsFollowing comparisons, the third approach using the variable cpsG-K region demonstrated the best performance with 99.9% typeability and 86.7% concordance. Overall, of the 105 discordant isolates, 71 were resolved following retesting of latex agglutination and whole genome sequencing, 20 failed to assign a serotype using latex agglutination and only 14 were found to be truly discordant on re-testing. Comparison of this final approach with the previously described assembly-based approach returned identical results.ConclusionsThese results demonstrated that molecular capsular typing using whole genome sequencing and a mapping-based approach is a viable alternative to the traditional, latex agglutination-based serotyping method and can be implemented in a public health microbiology setting.
Carbohydrate Research | 2018
Christian Kjeldsen; Sofie Slott; Pernille L. Elverdal; Carmen Sheppard; Georgia Kapatai; Norman K. Fry; Ian C. Skovsted; Jens Ø. Duus
Streptococcus pneumoniae is characterised into 92 serotypes based on antigenic reactions of commercial rabbit sera to the capsular polysaccharides. During development of a bioinformatic serotyping tool (PneumoCaT), an isolate exhibited a novel codon at residue 385 of the glycosyltransferase gene wcwK encoding a distinct amino acid, which differentiates genogroup 7. Investigation by repeat serotyping and Quellung reaction revealed a novel pattern of factor sera with the isolate reacting very strongly with 7f, but also with 7e factor sera. The structure of the capsular polysaccharide was determined by NMR spectroscopy to be an approximately 5:1 combination of the structures of 7C and 7B, respectively, and the structure of 7C was also elucidated. All data from whole genome sequencing, NMR spectroscopy, production of antisera and serotyping of the novel 7 strain shows that it is a new serotype, which will be named in the Danish nomenclature as 7D.