Georgianne L. Arnold
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georgianne L. Arnold.
Nature Genetics | 2008
Nicola Brunetti-Pierri; Jonathan S. Berg; Fernando Scaglia; John W. Belmont; Carlos A. Bacino; Trilochan Sahoo; Seema R. Lalani; Brett H. Graham; Brendan Lee; Marwan Shinawi; Joseph Shen; Sung Hae L Kang; Amber Pursley; Timothy Lotze; Gail Kennedy; Susan Lansky-Shafer; Christine Weaver; Elizabeth Roeder; Theresa A. Grebe; Georgianne L. Arnold; Terry Hutchison; Tyler Reimschisel; Stephen Amato; Michael T. Geragthy; Jeffrey W. Innis; Ewa Obersztyn; Beata Nowakowska; Sally Rosengren; Patricia I. Bader; Dorothy K. Grange
Chromosome region 1q21.1 contains extensive and complex low-copy repeats, and copy number variants (CNVs) in this region have recently been reported in association with congenital heart defects, developmental delay, schizophrenia and related psychoses. We describe 21 probands with the 1q21.1 microdeletion and 15 probands with the 1q21.1 microduplication. These CNVs were inherited in most of the cases in which parental studies were available. Consistent and statistically significant features of microcephaly and macrocephaly were found in individuals with microdeletion and microduplication, respectively. Notably, a paralog of the HYDIN gene located on 16q22.2 and implicated in autosomal recessive hydrocephalus was inserted into the 1q21.1 region during the evolution of Homo sapiens; we found this locus to be deleted or duplicated in the individuals we studied, making it a probable candidate for the head size abnormalities observed. We propose that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies. These phenotypes are subject to incomplete penetrance and variable expressivity.
Human Mutation | 2008
Lee-Jun C. Wong; Robert K. Naviaux; Nicola Brunetti-Pierri; Qing Zhang; Eric S. Schmitt; Cavatina K. Truong; Margherita Milone; Bruce H. Cohen; Beverly Wical; Jaya Ganesh; Alice Basinger; Barbara K. Burton; Kathryn J. Swoboda; Donald L. Gilbert; Adeline Vanderver; Russell P. Saneto; Bruno Maranda; Georgianne L. Arnold; Jose E. Abdenur; Paula J. Waters; William C. Copeland
Mutations in the POLG gene have emerged as one of the most common causes of inherited mitochondrial disease in children and adults. They are responsible for a heterogeneous group of at least 6 major phenotypes of neurodegenerative disease that include: 1) childhood Myocerebrohepatopathy Spectrum disorders (MCHS), 2) Alpers syndrome, 3) Ataxia Neuropathy Spectrum (ANS) disorders, 4) Myoclonus Epilepsy Myopathy Sensory Ataxia (MEMSA), 5) autosomal recessive Progressive External Ophthalmoplegia (arPEO), and 6) autosomal dominant Progressive External Ophthalmoplegia (adPEO). Due to the clinical heterogeneity, time‐dependent evolution of symptoms, overlapping phenotypes, and inconsistencies in muscle pathology findings, definitive diagnosis relies on the molecular finding of deleterious mutations. We sequenced the exons and flanking intron region from approximately 350 patients displaying a phenotype consistent with POLG related mitochondrial disease and found informative mutations in 61 (17%). Two mutant alleles were identified in 31 unrelated index patients with autosomal recessive POLG‐related disorders. Among them, 20 (67%) had Alpers syndrome, 4 (13%) had arPEO, and 3 (10%) had ANS. In addition, 30 patients carrying one altered POLG allele were found. A total of 25 novel alterations were identified, including 6 null mutations. We describe the predicted structural/functional and clinical importance of the previously unreported missense variants and discuss their likelihood of being pathogenic. In conclusion, sequence analysis allows the identification of mutations responsible for POLG‐related disorders and, in most of the autosomal recessive cases where two mutant alleles are found in trans, finding deleterious mutations can provide an unequivocal diagnosis of the disease. Published 2008 Wiley‐Liss, Inc.
Genetics in Medicine | 2009
Marc Nicolino; Barry J. Byrne; J. E. Wraith; Nancy Leslie; Hanna Mandel; David R. Freyer; Georgianne L. Arnold; Eniko K. Pivnick; C. J. Ottinger; Peter Robinson; John Charles A Loo; M Smitka; Philip Jardine; Luciano Tatò; Brigitte Chabrol; Shawn E. McCandless; Shigemi Kimura; L. Mehta; Deeksha Bali; Alison Skrinar; Claire Morgan; Lakshmi Rangachari; Deya Corzo; Priya S. Kishnani
Purpose: A clinical trial was conducted to evaluate the safety and efficacy of alglucosidase alfa in infants and children with advanced Pompe disease.Methods: Open-label, multicenter study of IV alglucosidase alfa treatment in 21 infants 3–43 months old (median 13 months) with minimal acid α-glucosidase activity and abnormal left ventricular mass index by echocardiography. Patients received IV alglucosidase alfa every 2 weeks for up to 168 weeks (median 120 weeks). Survival results were compared with an untreated reference cohort.Results: At study end, 71% (15/21) of patients were alive and 44% (7/16) of invasive-ventilator free patients remained so. Compared with the untreated reference cohort, alglucosidase alfa reduced the risk of death by 79% (P < 0.001) and the risk of invasive ventilation by 58% (P = 0.02). Left ventricular mass index improved or remained normal in all patients evaluated beyond 12 weeks; 62% (13/21) achieved new motor milestones. Five patients were walking independently at the end of the study and 86% (18/21) gained functional independence skills. Overall, 52% (11/21) of patients experienced infusion-associated reactions; 95% (19/20) developed IgG antibodies to recombinant human lysosomal acid α-glucosidase; no patients withdrew from the study because of safety concerns.Conclusions: In this population of infants with advanced disease, biweekly infusions with alglucosidase alfa prolonged survival and invasive ventilation-free survival. Treatment also improved indices of cardiomyopathy, motor skills, and functional independence.
Pediatric Neurology | 2009
Patricia K. Duffner; Michele Caggana; Joseph J. Orsini; David A. Wenger; Marc C. Patterson; Carl J. Crosley; Joanne Kurtzberg; Georgianne L. Arnold; Maria L. Escolar; Darius J. Adams; Mary R. Andriola; Alan M. Aron; Emma Ciafaloni; Alexandra Djukic; Richard W. Erbe; Patricia Galvin-Parton; Laura Helton; Edwin H. Kolodny; Barry E. Kosofsky; David Kronn; Jennifer M. Kwon; Paul A. Levy; Jill Miller-Horn; Thomas P. Naidich; Joan E. Pellegrino; James M. Provenzale; Stanley J. Rothman; Melissa P. Wasserstein
Krabbe disease is a rare inherited neurologic disorder affecting the central and peripheral nervous systems. The disease has four phenotypes: early infantile, later onset, adolescent, and adult. The only known treatment is hematopoietic stem cell transplantation, which is, in the early infantile form of the disease, most beneficial if performed before onset of clinical symptoms. In August 2006, New York State began screening all newborns for Krabbe disease. A rapid and accurate technique for assessing galactocerebrosidase activity and performing DNA mutation analysis had been developed. Interpreting these results was limited, however, because neither enzyme activity nor genetic mutation reliably predicts phenotype. A series of initiatives were therefore developed by a multidisciplinary group of neurologists, geneticists, metabolic pediatricians, neurodevelopmental pediatricians, and transplant physicians (the Krabbe Consortium of New York State) to enhance the effectiveness of the newborn screening program. A standardized clinical evaluation protocol was designed based on the available literature, criteria for transplantation for the early infantile phenotype were formulated, a clinical database and registry was developed, and a study of developmental and functional outcomes was instituted. This multidisciplinary standardized approach to evaluating infants who have positive results on newborn screening may serve as a model for other states as they begin the process of screening for Krabbe disease and other lysosomal storage disorders.
Journal of Autism and Developmental Disorders | 2003
Georgianne L. Arnold; Susan L. Hyman; Robert A. Mooney; Russell S. Kirby
The plasma amino acid profiles of 36 children with autism spectrum disorders were reviewed to determine the impact of diet on amino acid patterns. Ten of the children were on gluten and casein restricted diets administered by parents, while the other 26 consumed unrestricted diets. No amino acid profile specific to autism was identified. However, children with autism had more essential amino acid deficiencies consistent with poor protein nutrition than an age/gender matched control group. There was a trend for children with autism who were on restricted diets to have an increased prevalence of essential amino acid deficiencies and lower plasma levels of essential acids including the neurotransmitter precursors tyrosine and tryptophan than both controls and children with autism on unrestricted diets. These data indicate that larger, more focused studies of protein nutrition in children with autism are needed in order to determine the extent to which restricted diets might place the developing brains of children with autism at risk from protein malnutrition. The high rate of tryptophan and tyrosine deficiency in this group is also of concern given their role as neurotransmitter precursors.
Molecular Genetics and Metabolism | 2009
Georgianne L. Arnold; Johan L.K. Van Hove; Debra Freedenberg; Arnold W. Strauss; Nicola Longo; Barbara K. Burton; Cheryl Garganta; Can Ficicioglu; Stephen D. Cederbaum; Cary O. Harding; Richard G. Boles; Dietrich Matern; Pranesh Chakraborty; Annette Feigenbaum
INTRODUCTION Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is a disorder of oxidation of long chain fat, and can present as cardiomyopathy or fasting intolerance in the first months to years of life, or as myopathy in later childhood to adulthood. Expanded newborn screening has identified a relatively high incidence of this disorder (1:31,500), but there is a dearth of evidence-based outcomes data to guide the development of clinical practice protocols. This consensus protocol is intended to assist clinicians in the diagnosis and management of screen-positive newborns for VLCAD deficiency until evidence-based guidelines are available. METHOD The Oxford Centre for Evidence-based Medicine system was used to grade the literature review and create recommendations graded from A (evidence level of randomized clinical trials) to D (expert opinion). Delphi was used as the consensus tool. A panel of 14 experts (including clinicians, diagnostic laboratory directors and researchers) completed three rounds of survey questions and had a face-to-face meeting. RESULT Panelists reviewed the initial evaluation of the screen-positive infant, diagnostic testing and management of diagnosed patients. Grade C and D consensus recommendations were made in each of these three areas. The panel did not reach consensus on all issues, particularly in the dietary management of asymptomatic infants diagnosed by newborn screening.
Journal of Inherited Metabolic Disease | 2004
Georgianne L. Arnold; Catherine Joy Vladutiu; Craig C. Orlowski; E. M. Blakely; Jane M. DeLuca
Sumary: Recent data suggest that children with phenylketonuria (PKU) and poor metabolic control may have an increased prevalence of attentional dysfunction. However, few formal studies have addressed this topic in detail. We reviewed the medical records of 38 school-aged children with early and continuously treated PKU to determine the prevalence of stimulant use for attentional dysfunction, and to determine the relationship between metabolic control and attentional symptoms. Twenty-six per cent of the PKU children used a stimulant medication for attentional dysfunction. This is significantly higher than in an age- and sex-matched control group consisting of children with type I diabetes mellitus (6.5%, p<0.006), and also considerably higher than population norms for attention deficit hyperactivity disorder (ADHD) (5%). We also found a significant relationship between phenylalanine levels and stimulant use or attentional symptoms. Mean plasma phenylalanine concentration was 486 µmol/L in the non-stimulant-using group and 792 µmol/L in the stimulant-using group (p<0.02). Mean phenylalanine concentration was 462 µmol/L in the group not reporting attentional symptoms, and was 702 µmol/L in the symptomatic group (p<0.05). Parents of the stimulant-using children felt that the stimulants were efficacious in treating their childs attentional symptoms. Stimulant use and parent reports of attentional dysfunction are quite common in our PKU patients and appear to be strongly related to higher phenylalanine concentrations.
Genetics in Medicine | 2016
Joseph J. Orsini; Denise M. Kay; Carlos A. Saavedra-Matiz; David A. Wenger; Patricia K. Duffner; Richard W. Erbe; Chad K. Biski; Monica Martin; Lea M. Krein; Matthew Nichols; Joanne Kurtzberg; Maria L. Escolar; Darius J. Adams; Georgianne L. Arnold; Alejandro Iglesias; Patricia Galvin-Parton; David Kronn; Jennifer M. Kwon; Paul A. Levy; Joan E. Pellegrino; Natasha Shur; Melissa P. Wasserstein; Michele Caggana
Purpose:Krabbe disease (KD) results from galactocerebrosidase (GALC) deficiency. Infantile KD symptoms include irritability, progressive stiffness, developmental delay, and death. The only potential treatment is hematopoietic stem cell transplantation. New York State (NYS) implemented newborn screening for KD in 2006.Methods:Dried blood spots from newborns were assayed for GALC enzyme activity using mass spectrometry, followed by molecular analysis for those with low activity (≤12% of the daily mean). Infants with low enzyme activity and one or more mutations were referred for follow-up diagnostic testing and neurological examination.Results:Of >1.9 million screened, 620 infants were subjected to molecular analysis and 348 were referred for diagnostic testing. Five had enzyme activities and mutations consistent with infantile KD and manifested clinical/neurodiagnostic abnormalities. Four underwent transplantation, two are surviving with moderate to severe handicaps, and two died from transplant-related complications. The significance of many sequence variants identified is unknown. Forty-six asymptomatic infants were found to be at moderate to high risk for disease.Conclusions:The positive predictive value of KD screening in NYS is 1.4% (5/346) considering confirmed infantile cases. The incidence of infantile KD in NYS is approximately 1 in 394,000, but it may be higher for later-onset forms.Genet Med 18 3, 239–248.
American Journal of Medical Genetics | 1997
Cary O. Harding; Georgianne L. Arnold; Lewis A. Barness; Jon A. Wolff; David S. Rosenblatt
Functional methionine synthase deficiency due to abnormal methylcobalamin metabolism causes megaloblastic anemia, moderate to severe developmental delay, lethargy, and anorexia in association with homocystinuria. Patients with this disorder of cobalamin metabolism can be classified into two separate groups, cblE or cblG, primarily on the basis of complementation analysis with cultured skin fibroblasts. We describe two unrelated boys, ages 3 and 5 years, with the cblG defect in methylcobalamin synthesis. Both children presented with severe developmental delay, lethargy, anorexia, and megaloblastic anemia. The diagnosis of homocystinuria was delayed in each case due to difficulties with detection of small amounts of homocystine in physiologic samples. The clinical course of cblG disease is favorably altered by treatment with intramuscular hydroxycobalamin. Megaloblastosis in the presence of adequate supplies of cobalamin and folate in the blood must alert the clinician to the possibility of functional methionine synthase deficiency and should prompt a careful search for associated biochemical hallmarks, including homocystinuria/emia.
Genetics in Medicine | 2016
Melissa P. Wasserstein; Mary R. Andriola; Georgianne L. Arnold; Alan M. Aron; Patricia K. Duffner; Richard W. Erbe; Maria L. Escolar; Lissette Estrella; Patricia Galvin-Parton; Alejandro Iglesias; Denise M. Kay; David Kronn; Joanne Kurtzberg; Jennifer M. Kwon; Thomas J. Langan; Paul A. Levy; Thomas P. Naidich; Joseph J. Orsini; Joan E. Pellegrino; James M. Provenzale; David A. Wenger; Michele Caggana
Background:Early infantile Krabbe disease is rapidly fatal, but hematopoietic stem cell transplantation (HSCT) may improve outcomes if performed soon after birth. New York State began screening all newborns for Krabbe disease in 2006.Methods:Infants with abnormal newborn screen results for Krabbe disease were referred to specialty-care centers. Newborns found to be at high risk for Krabbe disease underwent a neurodiagnostic battery to determine the need for emergent HSCT.Results:Almost 2 million infants were screened. Five infants were diagnosed with early infantile Krabbe disease. Three died, two from HSCT-related complications and one from untreated disease. Two children who received HSCT have moderate to severe developmental delays. Forty-six currently asymptomatic children are considered to be at moderate or high risk for development of later-onset Krabbe disease.Conclusions:These results show significant HSCT-associated morbidity and mortality in early infantile Krabbe disease and raise questions about its efficacy when performed in newborns diagnosed through newborn screening. The unanticipated identification of “at risk” children introduces unique ethical and medicolegal issues. New York’s experience raises questions about the risks, benefits, and practicality of screening newborns for Krabbe disease. It is imperative that objective assessments be made on an ongoing basis as additional states begin screening for this disorder.Genet Med 18 12, 1235–1243.