Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georgina Armstrong is active.

Publication


Featured researches published by Georgina Armstrong.


Nature Genetics | 2009

Genome-wide association study identifies five susceptibility loci for glioma.

Sanjay Shete; Fay J. Hosking; Lindsay B. Robertson; Sara E. Dobbins; Marc Sanson; Beatrice Malmer; Matthias Simon; Yannick Marie; Blandine Boisselier; Jean Yves Delattre; Khê Hoang-Xuan; Soufiane El Hallani; Ahmed Idbaih; Diana Zelenika; Ulrika Andersson; Roger Henriksson; A. Tommy Bergenheim; Maria Feychting; Stefan Lönn; Anders Ahlbom; Johannes Schramm; Michael Linnebank; Kari Hemminki; Rajiv Kumar; Sarah J. Hepworth; Amy Price; Georgina Armstrong; Yanhong Liu; Xiangjun Gu; Robert Yu

To identify risk variants for glioma, we conducted a meta-analysis of two genome-wide association studies by genotyping 550K tagging SNPs in a total of 1,878 cases and 3,670 controls, with validation in three additional independent series totaling 2,545 cases and 2,953 controls. We identified five risk loci for glioma at 5p15.33 (rs2736100, TERT; P = 1.50 × 10−17), 8q24.21 (rs4295627, CCDC26; P = 2.34 × 10−18), 9p21.3 (rs4977756, CDKN2A-CDKN2B; P = 7.24 × 10−15), 20q13.33 (rs6010620, RTEL1; P = 2.52 × 10−12) and 11q23.3 (rs498872, PHLDB1; P = 1.07 × 10−8). These data show that common low-penetrance susceptibility alleles contribute to the risk of developing glioma and provide insight into disease causation of this primary brain tumor.


Human Molecular Genetics | 2011

Chromosome 7p11.2 (EGFR) variation influences glioma risk

Marc Sanson; Fay J. Hosking; Sanjay Shete; Diana Zelenika; Sara E. Dobbins; Yussanne Ma; Victor Enciso-Mora; Ahmed Idbaih; Jean Yves Delattre; Khê Hoang-Xuan; Yannick Marie; Blandine Boisselier; Catherine Carpentier; Xiao Wei Wang; Anna Luisa Di Stefano; Marianne Labussière; Konstantinos Gousias; Johannes Schramm; Anne Boland; Doris Lechner; Ivo Gut; Georgina Armstrong; Yanhong Liu; Robert Yu; Ching Lau; Maria Chiara Di Bernardo; Lindsay B. Robertson; Kenneth Muir; Sarah J. Hepworth; Anthony J. Swerdlow

While gliomas are the most common primary brain tumors, their etiology is largely unknown. To identify novel risk loci for glioma, we conducted genome-wide association (GWA) analysis of two case-control series from France and Germany (2269 cases and 2500 controls). Pooling these data with previously reported UK and US GWA studies provided data on 4147 glioma cases and 7435 controls genotyped for 424 460 common tagging single-nucleotide polymorphisms. Using these data, we demonstrate two statistically independent associations between glioma and rs11979158 and rs2252586, at 7p11.2 which encompasses the EGFR gene (population-corrected statistics, P(c) = 7.72 × 10(-8) and 2.09 × 10(-8), respectively). Both associations were independent of tumor subtype, and were independent of EGFR amplification, p16INK4a deletion and IDH1 mutation status in tumors; compatible with driver effects of the variants on glioma development. These findings show that variation in 7p11.2 is a determinant of inherited glioma risk.


Journal of Clinical Oncology | 2010

Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 Genes Involved in the Double-Strand Break Repair Pathway Predict Glioblastoma Survival

Yanhong Liu; Sanjay Shete; Carol J. Etzel; Michael E. Scheurer; George Alexiou; Georgina Armstrong; Spyros Tsavachidis; Fu Wen Liang; Mark R. Gilbert; Kenneth D. Aldape; Terri S. Armstrong; Richard S. Houlston; Fay J. Hosking; Lindsay B. Robertson; Yuanyuan Xiao; John K. Wiencke; Margaret Wrensch; Ulrika Andersson; Beatrice Melin; Melissa L. Bondy

PURPOSE Glioblastoma (GBM) is the most common and aggressive type of glioma and has the poorest survival. However, a small percentage of patients with GBM survive well beyond the established median. Therefore, identifying the genetic variants that influence this small number of unusually long-term survivors may provide important insight into tumor biology and treatment. PATIENTS AND METHODS Among 590 patients with primary GBM, we evaluated associations of survival with the 100 top-ranking glioma susceptibility single nucleotide polymorphisms from our previous genome-wide association study using Cox regression models. We also compared differences in genetic variation between short-term survivors (STS; <or= 12 months) and long-term survivors (LTS; >or= 36 months), and explored classification and regression tree analysis for survival data. We tested results using two independent series totaling 543 GBMs. RESULTS We identified LIG4 rs7325927 and BTBD2 rs11670188 as predictors of STS in GBM and CCDC26 rs10464870 and rs891835, HMGA2 rs1563834, and RTEL1 rs2297440 as predictors of LTS. Further survival tree analysis revealed that patients >or= 50 years old with LIG4 rs7325927 (V) had the worst survival (median survival time, 1.2 years) and exhibited the highest risk of death (hazard ratio, 17.53; 95% CI, 4.27 to 71.97) compared with younger patients with combined RTEL1 rs2297440 (V) and HMGA2 rs1563834 (V) genotypes (median survival time, 7.8 years). CONCLUSION Polymorphisms in the LIG4, BTBD2, HMGA2, and RTEL1 genes, which are involved in the double-strand break repair pathway, are associated with GBM survival.


Journal of the National Cancer Institute | 2015

Germline mutations in shelterin complex genes are associated with familial glioma

Matthew N. Bainbridge; Georgina Armstrong; M. Monica Gramatges; Alison A. Bertuch; Shalini N. Jhangiani; Harsha Doddapaneni; Lora Lewis; Joseph Tombrello; Spyros Tsavachidis; Yanhong Liu; Ali Jalali; Sharon E. Plon; Ching C. Lau; Donald W. Parsons; Elizabeth B. Claus; Jill S. Barnholtz-Sloan; Dora Il'yasova; Joellen M. Schildkraut; Francis Ali-Osman; Siegal Sadetzki; Christoffer Johansen; Richard S. Houlston; Robert B. Jenkins; Daniel H. Lachance; Sara H. Olson; Jonine L. Bernstein; Ryan Merrell; Margaret Wrensch; Kyle M. Walsh; Faith G. Davis

Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1 (p.D617Efs), also predicted to disrupt TPP1 binding. All families with POT1 mutations had affected members with oligodendroglioma, a specific subtype of glioma more sensitive to irradiation. These findings are important for understanding the origin of glioma and could have importance for the future diagnostics and treatment of glioma.


Cancer Epidemiology, Biomarkers & Prevention | 2007

GLIOGENE—an International Consortium to Understand Familial Glioma

Beatrice Malmer; Phyllis Adatto; Georgina Armstrong; Jill S. Barnholtz-Sloan; Jonine L. Bernstein; Elizabeth B. Claus; Faith G. Davis; Richard S. Houlston; Dora Il'yasova; Robert B. Jenkins; Christoffer Johansen; Rose Lai; Ching Lau; Bridget J. McCarthy; Hanne Nielsen; Sara H. Olson; Siegal Sadetzki; Sanjay Shete; Fredrik Wiklund; Margaret Wrensch; Ping Yang; Melissa L. Bondy

Evidence for familial aggregation of glioma has been documented in both case-control and cohort studies and occurs apart from the well-described rare inherited genetic syndromes involving glioma: neurofibromatosis type 1 and 2, tuberous sclerosis, Turcots syndrome, and Li-Fraumeni syndrome. Nonsyndromic glioma families have been studied but no genes have been identified in the two published linkage studies of familial glioma probably due to the small number of families. Because glioma is a rare but devastating cancer, and a family history of glioma has been observed in ∼5% of the cases, we initiated an international consortium to identify glioma families not affected by syndromes to better understand the inherited factors related to this disease. The international consortium GLIOGENE is an acronym for “glioma gene” and includes 15 research groups in North America, Europe, and Israel to study familial glioma. The overarching goal is to characterize genes in glioma families using a genome-wide single-nucleotide polymorphism approach and conducting linkage analysis to identify new genomic regions or loci that could harbor genes important for gliomagenesis. Here, we review the rationale for studying familial glioma and our proposed strategy for the GLIOGENE study. (Cancer Epidemiol Biomarkers Prev 2007;16(9):1730–4)


Nature Genetics | 2017

Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors.

Beatrice Melin; Jill S. Barnholtz-Sloan; Margaret Wrensch; Christoffer Johansen; Dora Il'yasova; Ben Kinnersley; Quinn T. Ostrom; Karim Labreche; Yanwen Chen; Georgina Armstrong; Yanhong Liu; Jeanette E. Eckel-Passow; Paul A. Decker; Marianne Labussière; Ahmed Idbaih; Khê Hoang-Xuan; Anna-Luisa Di Stefano; Karima Mokhtari; Jean-Yves Delattre; Peter Broderick; Pilar Galan; Konstantinos Gousias; Johannes Schramm; Minouk J. Schoemaker; Sarah Fleming; Stefan Herms; Stefanie Heilmann; Markus M. Nöthen; Heinz-Erich Wichmann; Stefan Schreiber

Genome-wide association studies (GWAS) have transformed our understanding of glioma susceptibility, but individual studies have had limited power to identify risk loci. We performed a meta-analysis of existing GWAS and two new GWAS, which totaled 12,496 cases and 18,190 controls. We identified five new loci for glioblastoma (GBM) at 1p31.3 (rs12752552; P = 2.04 × 10−9, odds ratio (OR) = 1.22), 11q14.1 (rs11233250; P = 9.95 × 10−10, OR = 1.24), 16p13.3 (rs2562152; P = 1.93 × 10−8, OR = 1.21), 16q12.1 (rs10852606; P = 1.29 × 10−11, OR = 1.18) and 22q13.1 (rs2235573; P = 1.76 × 10−10, OR = 1.15), as well as eight loci for non-GBM tumors at 1q32.1 (rs4252707; P = 3.34 × 10−9, OR = 1.19), 1q44 (rs12076373; P = 2.63 × 10−10, OR = 1.23), 2q33.3 (rs7572263; P = 2.18 × 10−10, OR = 1.20), 3p14.1 (rs11706832; P = 7.66 × 10−9, OR = 1.15), 10q24.33 (rs11598018; P = 3.39 × 10−8, OR = 1.14), 11q21 (rs7107785; P = 3.87 × 10−10, OR = 1.16), 14q12 (rs10131032; P = 5.07 × 10−11, OR = 1.33) and 16p13.3 (rs3751667; P = 2.61 × 10−9, OR = 1.18). These data substantiate that genetic susceptibility to GBM and non-GBM tumors are highly distinct, which likely reflects different etiology.


British Journal of Cancer | 2013

Low penetrance susceptibility to glioma is caused by the TP53 variant rs78378222

Victor Enciso-Mora; Fay J. Hosking; A. L. Di Stefano; Diana Zelenika; Sanjay Shete; Peter Broderick; Ahmed Idbaih; Jean Yves Delattre; Khê Hoang-Xuan; Yannick Marie; Marianne Labussière; Agusti Alentorn; Pietro Ciccarino; Marta Rossetto; Georgina Armstrong; Yongmei Liu; Konstantinos Gousias; Johannes Schramm; Ching Lau; Sarah J. Hepworth; Minouk J. Schoemaker; Konstantin Strauch; Martina Müller-Nurasyid; Stefan Schreiber; Andre Franke; Susanne Moebus; Lewin Eisele; Anthony J. Swerdlow; Matthias Simon; Melissa L. Bondy

Background:Most of the heritable risk of glioma is presently unaccounted for by mutations in known genes. In addition to rare inactivating germline mutations in TP53 causing glioma in the context of the Li-Fraumeni syndrome, polymorphic variation in TP53 may also contribute to the risk of developing glioma.Methods:To comprehensively evaluate the impact of variation in TP53 on risk, we analysed 23 tagSNPs and imputed 2377 unobserved genotypes in four series totaling 4147 glioma cases and 7435 controls.Results:The strongest validated association signal was shown by the imputed single-nucleotide polymorphism (SNP) rs78378222 (P=6.86 × 10−24, minor allele frequency ∼0.013). Confirmatory genotyping confirmed the high quality of the imputation. The association between rs78378222 and risk was seen for both glioblastoma multiforme (GBM) and non-GBM tumours. We comprehensively examined the relationship between rs78378222 and overall survival in two of the case series totaling 1699 individuals. Despite employing statistical tests sensitive to the detection of differences in early survival, no association was shown.Conclusion:Our data provided strong validation of rs78378222 as a risk factor for glioma but do not support the tenet that the polymorphism being a clinically useful prognostic marker. Acquired TP53 inactivation is a common feature of glioma. As rs78378222 changes the polyadenylation signal of TP53 leading to impaired 3′-end processing of TP53 mRNA, the SNP has strong plausibility for being directly functional contributing to the aetiological basis of glioma.


Cancer Research | 2011

Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium

Sanjay Shete; Ching C. Lau; Richard S. Houlston; Elizabeth B. Claus; Jill S. Barnholtz-Sloan; Rose Lai; Dora Il'yasova; Joellen M. Schildkraut; Siegal Sadetzki; Christoffer Johansen; Jonine L. Bernstein; Sara H. Olson; Robert B. Jenkins; Ping Yang; Nicholas A. Vick; Margaret Wrensch; Faith G. Davis; Bridget J. McCarthy; Eastwood Leung; Caleb F. Davis; Rita Cheng; Fay J. Hosking; Georgina Armstrong; Yanhong Liu; Robert Yu; Roger Henriksson; Beatrice Melin; Melissa L. Bondy; Christopher I. Amos; Kenneth D. Aldape

Gliomas, which generally have a poor prognosis, are the most common primary malignant brain tumors in adults. Recent genome-wide association studies have shown that inherited susceptibility plays a role in the development of glioma. Although first-degree relatives of patients exhibit a two-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge, the Genetic Epidemiology of Glioma International Consortium (Gliogene) was formed to collect DNA samples from families with two or more cases of histologically confirmed glioma. In this study, we present results obtained from 46 U.S. families in which multipoint linkage analyses were undertaken using nonparametric (model-free) methods. After removal of high linkage disequilibrium single-nucleotide polymorphism, we obtained a maximum nonparametric linkage score (NPL) of 3.39 (P = 0.0005) at 17q12-21.32 and the Z-score of 4.20 (P = 0.000007). To replicate our findings, we genotyped 29 independent U.S. families and obtained a maximum NPL score of 1.26 (P = 0.008) and the Z-score of 1.47 (P = 0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P = 0.00001). The genomic regions we have implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma.


Human Molecular Genetics | 2013

Deciphering the 8q24.21 association for glioma

Victor Enciso-Mora; Fay J. Hosking; Ben Kinnersley; Yufei Wang; Sanjay Shete; Diana Zelenika; Peter Broderick; Ahmed Idbaih; Jean Yves Delattre; Khê Hoang-Xuan; Yannick Marie; Anna Luisa Di Stefano; Marianne Labussière; Sara E. Dobbins; Blandine Boisselier; Pietro Ciccarino; Marta Rossetto; Georgina Armstrong; Yanhong Liu; Konstantinos Gousias; Johannes Schramm; Ching Lau; Sarah J. Hepworth; Konstantin Strauch; Martina Müller-Nurasyid; Stefan Schreiber; Andre Franke; Susanne Moebus; Lewin Eisele; Asta Försti

We have previously identified tagSNPs at 8q24.21 influencing glioma risk. We have sought to fine-map the location of the functional basis of this association using data from four genome-wide association studies, comprising a total of 4147 glioma cases and 7435 controls. To improve marker density across the 700 kb region, we imputed genotypes using 1000 Genomes Project data and high-coverage sequencing data generated on 253 individuals. Analysis revealed an imputed low-frequency SNP rs55705857 (P = 2.24 × 10(-38)) which was sufficient to fully capture the 8q24.21 association. Analysis by glioma subtype showed the association with rs55705857 confined to non-glioblastoma multiforme (non-GBM) tumours (P = 1.07 × 10(-67)). Validation of the non-GBM association was shown in three additional datasets (625 non-GBM cases, 2412 controls; P = 1.41 × 10(-28)). In the pooled analysis, the odds ratio for low-grade glioma associated with rs55705857 was 4.3 (P = 2.31 × 10(-94)). rs55705857 maps to a highly evolutionarily conserved sequence within the long non-coding RNA CCDC26 raising the possibility of direct functionality. These data provide additional insights into the aetiological basis of glioma development.


Cancer Epidemiology, Biomarkers & Prevention | 2016

Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study

E. Susan Amirian; Renke Zhou; Margaret Wrensch; Sara H. Olson; Michael E. Scheurer; Dora Il'yasova; Daniel H. Lachance; Georgina Armstrong; Lucie McCoy; Ching C. Lau; Elizabeth B. Claus; Jill S. Barnholtz-Sloan; Joellen M. Schildkraut; Francis Ali-Osman; Siegal Sadetzki; Christoffer Johansen; Richard S. Houlston; Robert B. Jenkins; Jonine L. Bernstein; Ryan Merrell; Faith G. Davis; Rose Lai; Sanjay Shete; Christopher I. Amos; Beatrice Melin; Melissa L. Bondy

Background: Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk. Methods: The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using two-stage random-effects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema. Results: Having a history of respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% confidence interval, 0.58–0.90). This association was similar when restricting to high-grade glioma cases. Asthma and eczema were also significantly protective against glioma. Conclusion: A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated, and findings from the GICC study further strengthen the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental. Impact: As the literature approaches a consensus on the impact of allergies in glioma risk, future research can begin to shift focus to what the underlying biologic mechanism behind this association may be, which could, in turn, yield new opportunities for immunotherapy or cancer prevention. Cancer Epidemiol Biomarkers Prev; 25(2); 282–90. ©2016 AACR.

Collaboration


Dive into the Georgina Armstrong's collaboration.

Top Co-Authors

Avatar

Melissa L. Bondy

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sanjay Shete

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonine L. Bernstein

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara H. Olson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoffer Johansen

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge